MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppun Structured version   Visualization version   GIF version

Theorem fsuppun 9296
Description: The union of two finitely supported functions is finitely supported (but not necessarily a function!). (Contributed by AV, 3-Jun-2019.)
Hypotheses
Ref Expression
fsuppun.f (𝜑𝐹 finSupp 𝑍)
fsuppun.g (𝜑𝐺 finSupp 𝑍)
Assertion
Ref Expression
fsuppun (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)

Proof of Theorem fsuppun
StepHypRef Expression
1 cnvun 6095 . . . . . . 7 (𝐹𝐺) = (𝐹𝐺)
21imaeq1i 6012 . . . . . 6 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹𝐺) “ (V ∖ {𝑍}))
3 imaundir 6103 . . . . . 6 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
42, 3eqtri 2752 . . . . 5 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
5 unexb 7687 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐺 ∈ V) ↔ (𝐹𝐺) ∈ V)
6 simpl 482 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → 𝐹 ∈ V)
75, 6sylbir 235 . . . . . . . . . 10 ((𝐹𝐺) ∈ V → 𝐹 ∈ V)
8 suppimacnv 8114 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
97, 8sylan 580 . . . . . . . . 9 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
109eqcomd 2735 . . . . . . . 8 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝐹 “ (V ∖ {𝑍})) = (𝐹 supp 𝑍))
1110adantr 480 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 “ (V ∖ {𝑍})) = (𝐹 supp 𝑍))
12 fsuppun.f . . . . . . . . 9 (𝜑𝐹 finSupp 𝑍)
1312fsuppimpd 9278 . . . . . . . 8 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
1413adantl 481 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ∈ Fin)
1511, 14eqeltrd 2828 . . . . . 6 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
16 simpr 484 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → 𝐺 ∈ V)
175, 16sylbir 235 . . . . . . . . 9 ((𝐹𝐺) ∈ V → 𝐺 ∈ V)
18 suppimacnv 8114 . . . . . . . . . 10 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 supp 𝑍) = (𝐺 “ (V ∖ {𝑍})))
1918eqcomd 2735 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 “ (V ∖ {𝑍})) = (𝐺 supp 𝑍))
2017, 19sylan 580 . . . . . . . 8 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝐺 “ (V ∖ {𝑍})) = (𝐺 supp 𝑍))
2120adantr 480 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐺 “ (V ∖ {𝑍})) = (𝐺 supp 𝑍))
22 fsuppun.g . . . . . . . . 9 (𝜑𝐺 finSupp 𝑍)
2322fsuppimpd 9278 . . . . . . . 8 (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
2423adantl 481 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐺 supp 𝑍) ∈ Fin)
2521, 24eqeltrd 2828 . . . . . 6 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐺 “ (V ∖ {𝑍})) ∈ Fin)
26 unfi 9095 . . . . . 6 (((𝐹 “ (V ∖ {𝑍})) ∈ Fin ∧ (𝐺 “ (V ∖ {𝑍})) ∈ Fin) → ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍}))) ∈ Fin)
2715, 25, 26syl2anc 584 . . . . 5 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍}))) ∈ Fin)
284, 27eqeltrid 2832 . . . 4 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
29 suppimacnv 8114 . . . . . 6 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
3029eleq1d 2813 . . . . 5 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (((𝐹𝐺) supp 𝑍) ∈ Fin ↔ ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin))
3130adantr 480 . . . 4 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (((𝐹𝐺) supp 𝑍) ∈ Fin ↔ ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin))
3228, 31mpbird 257 . . 3 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
3332ex 412 . 2 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin))
34 supp0prc 8103 . . . 4 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ∅)
35 0fi 8974 . . . 4 ∅ ∈ Fin
3634, 35eqeltrdi 2836 . . 3 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
3736a1d 25 . 2 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin))
3833, 37pm2.61i 182 1 (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  cun 3903  c0 4286  {csn 4579   class class class wbr 5095  ccnv 5622  cima 5626  (class class class)co 7353   supp csupp 8100  Fincfn 8879   finSupp cfsupp 9270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-supp 8101  df-en 8880  df-fin 8883  df-fsupp 9271
This theorem is referenced by:  fsuppunbi  9298  gsumzaddlem  19818  mptiffisupp  32649  elrspunidl  33375  evlselvlem  42559  evlselv  42560
  Copyright terms: Public domain W3C validator