MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppun Structured version   Visualization version   GIF version

Theorem fsuppun 9425
Description: The union of two finitely supported functions is finitely supported (but not necessarily a function!). (Contributed by AV, 3-Jun-2019.)
Hypotheses
Ref Expression
fsuppun.f (𝜑𝐹 finSupp 𝑍)
fsuppun.g (𝜑𝐺 finSupp 𝑍)
Assertion
Ref Expression
fsuppun (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)

Proof of Theorem fsuppun
StepHypRef Expression
1 cnvun 6165 . . . . . . 7 (𝐹𝐺) = (𝐹𝐺)
21imaeq1i 6077 . . . . . 6 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹𝐺) “ (V ∖ {𝑍}))
3 imaundir 6173 . . . . . 6 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
42, 3eqtri 2763 . . . . 5 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
5 unexb 7766 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐺 ∈ V) ↔ (𝐹𝐺) ∈ V)
6 simpl 482 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → 𝐹 ∈ V)
75, 6sylbir 235 . . . . . . . . . 10 ((𝐹𝐺) ∈ V → 𝐹 ∈ V)
8 suppimacnv 8198 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
97, 8sylan 580 . . . . . . . . 9 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
109eqcomd 2741 . . . . . . . 8 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝐹 “ (V ∖ {𝑍})) = (𝐹 supp 𝑍))
1110adantr 480 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 “ (V ∖ {𝑍})) = (𝐹 supp 𝑍))
12 fsuppun.f . . . . . . . . 9 (𝜑𝐹 finSupp 𝑍)
1312fsuppimpd 9407 . . . . . . . 8 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
1413adantl 481 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ∈ Fin)
1511, 14eqeltrd 2839 . . . . . 6 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
16 simpr 484 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → 𝐺 ∈ V)
175, 16sylbir 235 . . . . . . . . 9 ((𝐹𝐺) ∈ V → 𝐺 ∈ V)
18 suppimacnv 8198 . . . . . . . . . 10 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 supp 𝑍) = (𝐺 “ (V ∖ {𝑍})))
1918eqcomd 2741 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 “ (V ∖ {𝑍})) = (𝐺 supp 𝑍))
2017, 19sylan 580 . . . . . . . 8 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝐺 “ (V ∖ {𝑍})) = (𝐺 supp 𝑍))
2120adantr 480 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐺 “ (V ∖ {𝑍})) = (𝐺 supp 𝑍))
22 fsuppun.g . . . . . . . . 9 (𝜑𝐺 finSupp 𝑍)
2322fsuppimpd 9407 . . . . . . . 8 (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
2423adantl 481 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐺 supp 𝑍) ∈ Fin)
2521, 24eqeltrd 2839 . . . . . 6 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐺 “ (V ∖ {𝑍})) ∈ Fin)
26 unfi 9210 . . . . . 6 (((𝐹 “ (V ∖ {𝑍})) ∈ Fin ∧ (𝐺 “ (V ∖ {𝑍})) ∈ Fin) → ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍}))) ∈ Fin)
2715, 25, 26syl2anc 584 . . . . 5 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍}))) ∈ Fin)
284, 27eqeltrid 2843 . . . 4 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
29 suppimacnv 8198 . . . . . 6 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
3029eleq1d 2824 . . . . 5 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (((𝐹𝐺) supp 𝑍) ∈ Fin ↔ ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin))
3130adantr 480 . . . 4 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (((𝐹𝐺) supp 𝑍) ∈ Fin ↔ ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin))
3228, 31mpbird 257 . . 3 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
3332ex 412 . 2 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin))
34 supp0prc 8187 . . . 4 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ∅)
35 0fi 9081 . . . 4 ∅ ∈ Fin
3634, 35eqeltrdi 2847 . . 3 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
3736a1d 25 . 2 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin))
3833, 37pm2.61i 182 1 (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  cun 3961  c0 4339  {csn 4631   class class class wbr 5148  ccnv 5688  cima 5692  (class class class)co 7431   supp csupp 8184  Fincfn 8984   finSupp cfsupp 9399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-supp 8185  df-en 8985  df-fin 8988  df-fsupp 9400
This theorem is referenced by:  fsuppunbi  9427  gsumzaddlem  19954  mptiffisupp  32708  elrspunidl  33436  evlselvlem  42573  evlselv  42574
  Copyright terms: Public domain W3C validator