MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppun Structured version   Visualization version   GIF version

Theorem fsuppun 8582
Description: The union of two finitely supported functions is finitely supported (but not necessarily a function!). (Contributed by AV, 3-Jun-2019.)
Hypotheses
Ref Expression
fsuppun.f (𝜑𝐹 finSupp 𝑍)
fsuppun.g (𝜑𝐺 finSupp 𝑍)
Assertion
Ref Expression
fsuppun (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)

Proof of Theorem fsuppun
StepHypRef Expression
1 cnvun 5792 . . . . . . 7 (𝐹𝐺) = (𝐹𝐺)
21imaeq1i 5717 . . . . . 6 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹𝐺) “ (V ∖ {𝑍}))
3 imaundir 5800 . . . . . 6 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
42, 3eqtri 2802 . . . . 5 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
5 unexb 7235 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐺 ∈ V) ↔ (𝐹𝐺) ∈ V)
6 simpl 476 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → 𝐹 ∈ V)
75, 6sylbir 227 . . . . . . . . . 10 ((𝐹𝐺) ∈ V → 𝐹 ∈ V)
8 suppimacnv 7587 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
97, 8sylan 575 . . . . . . . . 9 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
109eqcomd 2784 . . . . . . . 8 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝐹 “ (V ∖ {𝑍})) = (𝐹 supp 𝑍))
1110adantr 474 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 “ (V ∖ {𝑍})) = (𝐹 supp 𝑍))
12 fsuppun.f . . . . . . . . 9 (𝜑𝐹 finSupp 𝑍)
1312fsuppimpd 8570 . . . . . . . 8 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
1413adantl 475 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ∈ Fin)
1511, 14eqeltrd 2859 . . . . . 6 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
16 simpr 479 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → 𝐺 ∈ V)
175, 16sylbir 227 . . . . . . . . 9 ((𝐹𝐺) ∈ V → 𝐺 ∈ V)
18 suppimacnv 7587 . . . . . . . . . 10 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 supp 𝑍) = (𝐺 “ (V ∖ {𝑍})))
1918eqcomd 2784 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 “ (V ∖ {𝑍})) = (𝐺 supp 𝑍))
2017, 19sylan 575 . . . . . . . 8 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝐺 “ (V ∖ {𝑍})) = (𝐺 supp 𝑍))
2120adantr 474 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐺 “ (V ∖ {𝑍})) = (𝐺 supp 𝑍))
22 fsuppun.g . . . . . . . . 9 (𝜑𝐺 finSupp 𝑍)
2322fsuppimpd 8570 . . . . . . . 8 (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
2423adantl 475 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐺 supp 𝑍) ∈ Fin)
2521, 24eqeltrd 2859 . . . . . 6 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐺 “ (V ∖ {𝑍})) ∈ Fin)
26 unfi 8515 . . . . . 6 (((𝐹 “ (V ∖ {𝑍})) ∈ Fin ∧ (𝐺 “ (V ∖ {𝑍})) ∈ Fin) → ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍}))) ∈ Fin)
2715, 25, 26syl2anc 579 . . . . 5 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍}))) ∈ Fin)
284, 27syl5eqel 2863 . . . 4 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
29 suppimacnv 7587 . . . . . 6 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
3029eleq1d 2844 . . . . 5 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (((𝐹𝐺) supp 𝑍) ∈ Fin ↔ ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin))
3130adantr 474 . . . 4 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (((𝐹𝐺) supp 𝑍) ∈ Fin ↔ ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin))
3228, 31mpbird 249 . . 3 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
3332ex 403 . 2 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin))
34 supp0prc 7579 . . . 4 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ∅)
35 0fin 8476 . . . 4 ∅ ∈ Fin
3634, 35syl6eqel 2867 . . 3 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
3736a1d 25 . 2 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin))
3833, 37pm2.61i 177 1 (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  cdif 3789  cun 3790  c0 4141  {csn 4398   class class class wbr 4886  ccnv 5354  cima 5358  (class class class)co 6922   supp csupp 7576  Fincfn 8241   finSupp cfsupp 8563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-oadd 7847  df-er 8026  df-en 8242  df-fin 8245  df-fsupp 8564
This theorem is referenced by:  fsuppunbi  8584  gsumzaddlem  18707
  Copyright terms: Public domain W3C validator