MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppun Structured version   Visualization version   GIF version

Theorem fsuppun 9384
Description: The union of two finitely supported functions is finitely supported (but not necessarily a function!). (Contributed by AV, 3-Jun-2019.)
Hypotheses
Ref Expression
fsuppun.f (𝜑𝐹 finSupp 𝑍)
fsuppun.g (𝜑𝐺 finSupp 𝑍)
Assertion
Ref Expression
fsuppun (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)

Proof of Theorem fsuppun
StepHypRef Expression
1 cnvun 6142 . . . . . . 7 (𝐹𝐺) = (𝐹𝐺)
21imaeq1i 6056 . . . . . 6 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹𝐺) “ (V ∖ {𝑍}))
3 imaundir 6150 . . . . . 6 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
42, 3eqtri 2760 . . . . 5 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
5 unexb 7737 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐺 ∈ V) ↔ (𝐹𝐺) ∈ V)
6 simpl 483 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → 𝐹 ∈ V)
75, 6sylbir 234 . . . . . . . . . 10 ((𝐹𝐺) ∈ V → 𝐹 ∈ V)
8 suppimacnv 8161 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
97, 8sylan 580 . . . . . . . . 9 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
109eqcomd 2738 . . . . . . . 8 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝐹 “ (V ∖ {𝑍})) = (𝐹 supp 𝑍))
1110adantr 481 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 “ (V ∖ {𝑍})) = (𝐹 supp 𝑍))
12 fsuppun.f . . . . . . . . 9 (𝜑𝐹 finSupp 𝑍)
1312fsuppimpd 9371 . . . . . . . 8 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
1413adantl 482 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ∈ Fin)
1511, 14eqeltrd 2833 . . . . . 6 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
16 simpr 485 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → 𝐺 ∈ V)
175, 16sylbir 234 . . . . . . . . 9 ((𝐹𝐺) ∈ V → 𝐺 ∈ V)
18 suppimacnv 8161 . . . . . . . . . 10 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 supp 𝑍) = (𝐺 “ (V ∖ {𝑍})))
1918eqcomd 2738 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 “ (V ∖ {𝑍})) = (𝐺 supp 𝑍))
2017, 19sylan 580 . . . . . . . 8 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝐺 “ (V ∖ {𝑍})) = (𝐺 supp 𝑍))
2120adantr 481 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐺 “ (V ∖ {𝑍})) = (𝐺 supp 𝑍))
22 fsuppun.g . . . . . . . . 9 (𝜑𝐺 finSupp 𝑍)
2322fsuppimpd 9371 . . . . . . . 8 (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
2423adantl 482 . . . . . . 7 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐺 supp 𝑍) ∈ Fin)
2521, 24eqeltrd 2833 . . . . . 6 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐺 “ (V ∖ {𝑍})) ∈ Fin)
26 unfi 9174 . . . . . 6 (((𝐹 “ (V ∖ {𝑍})) ∈ Fin ∧ (𝐺 “ (V ∖ {𝑍})) ∈ Fin) → ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍}))) ∈ Fin)
2715, 25, 26syl2anc 584 . . . . 5 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍}))) ∈ Fin)
284, 27eqeltrid 2837 . . . 4 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
29 suppimacnv 8161 . . . . . 6 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
3029eleq1d 2818 . . . . 5 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (((𝐹𝐺) supp 𝑍) ∈ Fin ↔ ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin))
3130adantr 481 . . . 4 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (((𝐹𝐺) supp 𝑍) ∈ Fin ↔ ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin))
3228, 31mpbird 256 . . 3 ((((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
3332ex 413 . 2 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin))
34 supp0prc 8151 . . . 4 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ∅)
35 0fin 9173 . . . 4 ∅ ∈ Fin
3634, 35eqeltrdi 2841 . . 3 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) ∈ Fin)
3736a1d 25 . 2 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin))
3833, 37pm2.61i 182 1 (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cdif 3945  cun 3946  c0 4322  {csn 4628   class class class wbr 5148  ccnv 5675  cima 5679  (class class class)co 7411   supp csupp 8148  Fincfn 8941   finSupp cfsupp 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-supp 8149  df-en 8942  df-fin 8945  df-fsupp 9364
This theorem is referenced by:  fsuppunbi  9386  gsumzaddlem  19791  mptiffisupp  31953  elrspunidl  32591  evlselvlem  41240  evlselv  41241
  Copyright terms: Public domain W3C validator