MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem2 Structured version   Visualization version   GIF version

Theorem cantnfp1lem2 9144
Description: Lemma for cantnfp1 9146. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
cantnfp1.e (𝜑 → ∅ ∈ 𝑌)
cantnfp1.o 𝑂 = OrdIso( E , (𝐹 supp ∅))
Assertion
Ref Expression
cantnfp1lem2 (𝜑 → dom 𝑂 = suc dom 𝑂)
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hints:   𝐹(𝑡)   𝑂(𝑡)

Proof of Theorem cantnfp1lem2
StepHypRef Expression
1 cantnfp1.x . . . . . . 7 (𝜑𝑋𝐵)
2 cantnfp1.f . . . . . . . . 9 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
3 iftrue 4475 . . . . . . . . 9 (𝑡 = 𝑋 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = 𝑌)
4 cantnfp1.y . . . . . . . . 9 (𝜑𝑌𝐴)
52, 3, 1, 4fvmptd3 6793 . . . . . . . 8 (𝜑 → (𝐹𝑋) = 𝑌)
6 cantnfp1.e . . . . . . . . 9 (𝜑 → ∅ ∈ 𝑌)
76ne0d 4303 . . . . . . . 8 (𝜑𝑌 ≠ ∅)
85, 7eqnetrd 3085 . . . . . . 7 (𝜑 → (𝐹𝑋) ≠ ∅)
94adantr 483 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → 𝑌𝐴)
10 cantnfp1.g . . . . . . . . . . . . . 14 (𝜑𝐺𝑆)
11 cantnfs.s . . . . . . . . . . . . . . 15 𝑆 = dom (𝐴 CNF 𝐵)
12 cantnfs.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ On)
13 cantnfs.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ On)
1411, 12, 13cantnfs 9131 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
1510, 14mpbid 234 . . . . . . . . . . . . 13 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1615simpld 497 . . . . . . . . . . . 12 (𝜑𝐺:𝐵𝐴)
1716ffvelrnda 6853 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
189, 17ifcld 4514 . . . . . . . . . 10 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
1918, 2fmptd 6880 . . . . . . . . 9 (𝜑𝐹:𝐵𝐴)
2019ffnd 6517 . . . . . . . 8 (𝜑𝐹 Fn 𝐵)
216elexd 3516 . . . . . . . 8 (𝜑 → ∅ ∈ V)
22 elsuppfn 7840 . . . . . . . 8 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
2320, 13, 21, 22syl3anc 1367 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
241, 8, 23mpbir2and 711 . . . . . 6 (𝜑𝑋 ∈ (𝐹 supp ∅))
25 n0i 4301 . . . . . 6 (𝑋 ∈ (𝐹 supp ∅) → ¬ (𝐹 supp ∅) = ∅)
2624, 25syl 17 . . . . 5 (𝜑 → ¬ (𝐹 supp ∅) = ∅)
27 ovexd 7193 . . . . . . 7 (𝜑 → (𝐹 supp ∅) ∈ V)
28 cantnfp1.o . . . . . . . . 9 𝑂 = OrdIso( E , (𝐹 supp ∅))
29 cantnfp1.s . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
3011, 12, 13, 10, 1, 4, 29, 2cantnfp1lem1 9143 . . . . . . . . 9 (𝜑𝐹𝑆)
3111, 12, 13, 28, 30cantnfcl 9132 . . . . . . . 8 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝑂 ∈ ω))
3231simpld 497 . . . . . . 7 (𝜑 → E We (𝐹 supp ∅))
3328oien 9004 . . . . . . 7 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝑂 ≈ (𝐹 supp ∅))
3427, 32, 33syl2anc 586 . . . . . 6 (𝜑 → dom 𝑂 ≈ (𝐹 supp ∅))
35 breq1 5071 . . . . . . 7 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐹 supp ∅) ↔ ∅ ≈ (𝐹 supp ∅)))
36 ensymb 8559 . . . . . . . 8 (∅ ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) ≈ ∅)
37 en0 8574 . . . . . . . 8 ((𝐹 supp ∅) ≈ ∅ ↔ (𝐹 supp ∅) = ∅)
3836, 37bitri 277 . . . . . . 7 (∅ ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) = ∅)
3935, 38syl6bb 289 . . . . . 6 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) = ∅))
4034, 39syl5ibcom 247 . . . . 5 (𝜑 → (dom 𝑂 = ∅ → (𝐹 supp ∅) = ∅))
4126, 40mtod 200 . . . 4 (𝜑 → ¬ dom 𝑂 = ∅)
4231simprd 498 . . . . 5 (𝜑 → dom 𝑂 ∈ ω)
43 nnlim 7595 . . . . 5 (dom 𝑂 ∈ ω → ¬ Lim dom 𝑂)
4442, 43syl 17 . . . 4 (𝜑 → ¬ Lim dom 𝑂)
45 ioran 980 . . . 4 (¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂) ↔ (¬ dom 𝑂 = ∅ ∧ ¬ Lim dom 𝑂))
4641, 44, 45sylanbrc 585 . . 3 (𝜑 → ¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))
47 nnord 7590 . . . 4 (dom 𝑂 ∈ ω → Ord dom 𝑂)
48 unizlim 6309 . . . 4 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
4942, 47, 483syl 18 . . 3 (𝜑 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
5046, 49mtbird 327 . 2 (𝜑 → ¬ dom 𝑂 = dom 𝑂)
51 orduniorsuc 7547 . . . 4 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
5242, 47, 513syl 18 . . 3 (𝜑 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
5352ord 860 . 2 (𝜑 → (¬ dom 𝑂 = dom 𝑂 → dom 𝑂 = suc dom 𝑂))
5450, 53mpd 15 1 (𝜑 → dom 𝑂 = suc dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  wss 3938  c0 4293  ifcif 4469   cuni 4840   class class class wbr 5068  cmpt 5148   E cep 5466   We wwe 5515  dom cdm 5557  Ord word 6192  Oncon0 6193  Lim wlim 6194  suc csuc 6195   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  ωcom 7582   supp csupp 7832  cen 8508   finSupp cfsupp 8835  OrdIsocoi 8975   CNF ccnf 9126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-seqom 8086  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-cnf 9127
This theorem is referenced by:  cantnfp1lem3  9145
  Copyright terms: Public domain W3C validator