MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem2 Structured version   Visualization version   GIF version

Theorem cantnfp1lem2 9704
Description: Lemma for cantnfp1 9706. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
cantnfp1.e (𝜑 → ∅ ∈ 𝑌)
cantnfp1.o 𝑂 = OrdIso( E , (𝐹 supp ∅))
Assertion
Ref Expression
cantnfp1lem2 (𝜑 → dom 𝑂 = suc dom 𝑂)
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hints:   𝐹(𝑡)   𝑂(𝑡)

Proof of Theorem cantnfp1lem2
StepHypRef Expression
1 cantnfp1.x . . . . . . 7 (𝜑𝑋𝐵)
2 cantnfp1.f . . . . . . . . 9 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
3 iftrue 4536 . . . . . . . . 9 (𝑡 = 𝑋 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = 𝑌)
4 cantnfp1.y . . . . . . . . 9 (𝜑𝑌𝐴)
52, 3, 1, 4fvmptd3 7027 . . . . . . . 8 (𝜑 → (𝐹𝑋) = 𝑌)
6 cantnfp1.e . . . . . . . . 9 (𝜑 → ∅ ∈ 𝑌)
76ne0d 4335 . . . . . . . 8 (𝜑𝑌 ≠ ∅)
85, 7eqnetrd 2997 . . . . . . 7 (𝜑 → (𝐹𝑋) ≠ ∅)
94adantr 479 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → 𝑌𝐴)
10 cantnfp1.g . . . . . . . . . . . . . 14 (𝜑𝐺𝑆)
11 cantnfs.s . . . . . . . . . . . . . . 15 𝑆 = dom (𝐴 CNF 𝐵)
12 cantnfs.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ On)
13 cantnfs.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ On)
1411, 12, 13cantnfs 9691 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
1510, 14mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1615simpld 493 . . . . . . . . . . . 12 (𝜑𝐺:𝐵𝐴)
1716ffvelcdmda 7093 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
189, 17ifcld 4576 . . . . . . . . . 10 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
1918, 2fmptd 7123 . . . . . . . . 9 (𝜑𝐹:𝐵𝐴)
2019ffnd 6724 . . . . . . . 8 (𝜑𝐹 Fn 𝐵)
216elexd 3483 . . . . . . . 8 (𝜑 → ∅ ∈ V)
22 elsuppfn 8175 . . . . . . . 8 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
2320, 13, 21, 22syl3anc 1368 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
241, 8, 23mpbir2and 711 . . . . . 6 (𝜑𝑋 ∈ (𝐹 supp ∅))
25 n0i 4333 . . . . . 6 (𝑋 ∈ (𝐹 supp ∅) → ¬ (𝐹 supp ∅) = ∅)
2624, 25syl 17 . . . . 5 (𝜑 → ¬ (𝐹 supp ∅) = ∅)
27 ovexd 7454 . . . . . . 7 (𝜑 → (𝐹 supp ∅) ∈ V)
28 cantnfp1.o . . . . . . . . 9 𝑂 = OrdIso( E , (𝐹 supp ∅))
29 cantnfp1.s . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
3011, 12, 13, 10, 1, 4, 29, 2cantnfp1lem1 9703 . . . . . . . . 9 (𝜑𝐹𝑆)
3111, 12, 13, 28, 30cantnfcl 9692 . . . . . . . 8 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝑂 ∈ ω))
3231simpld 493 . . . . . . 7 (𝜑 → E We (𝐹 supp ∅))
3328oien 9563 . . . . . . 7 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝑂 ≈ (𝐹 supp ∅))
3427, 32, 33syl2anc 582 . . . . . 6 (𝜑 → dom 𝑂 ≈ (𝐹 supp ∅))
35 breq1 5152 . . . . . . 7 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐹 supp ∅) ↔ ∅ ≈ (𝐹 supp ∅)))
36 ensymb 9023 . . . . . . . 8 (∅ ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) ≈ ∅)
37 en0 9038 . . . . . . . 8 ((𝐹 supp ∅) ≈ ∅ ↔ (𝐹 supp ∅) = ∅)
3836, 37bitri 274 . . . . . . 7 (∅ ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) = ∅)
3935, 38bitrdi 286 . . . . . 6 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) = ∅))
4034, 39syl5ibcom 244 . . . . 5 (𝜑 → (dom 𝑂 = ∅ → (𝐹 supp ∅) = ∅))
4126, 40mtod 197 . . . 4 (𝜑 → ¬ dom 𝑂 = ∅)
4231simprd 494 . . . . 5 (𝜑 → dom 𝑂 ∈ ω)
43 nnlim 7885 . . . . 5 (dom 𝑂 ∈ ω → ¬ Lim dom 𝑂)
4442, 43syl 17 . . . 4 (𝜑 → ¬ Lim dom 𝑂)
45 ioran 981 . . . 4 (¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂) ↔ (¬ dom 𝑂 = ∅ ∧ ¬ Lim dom 𝑂))
4641, 44, 45sylanbrc 581 . . 3 (𝜑 → ¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))
47 nnord 7879 . . . 4 (dom 𝑂 ∈ ω → Ord dom 𝑂)
48 unizlim 6494 . . . 4 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
4942, 47, 483syl 18 . . 3 (𝜑 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
5046, 49mtbird 324 . 2 (𝜑 → ¬ dom 𝑂 = dom 𝑂)
51 orduniorsuc 7834 . . . 4 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
5242, 47, 513syl 18 . . 3 (𝜑 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
5352ord 862 . 2 (𝜑 → (¬ dom 𝑂 = dom 𝑂 → dom 𝑂 = suc dom 𝑂))
5450, 53mpd 15 1 (𝜑 → dom 𝑂 = suc dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  Vcvv 3461  wss 3944  c0 4322  ifcif 4530   cuni 4909   class class class wbr 5149  cmpt 5232   E cep 5581   We wwe 5632  dom cdm 5678  Ord word 6370  Oncon0 6371  Lim wlim 6372  suc csuc 6373   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  ωcom 7871   supp csupp 8165  cen 8961   finSupp cfsupp 9387  OrdIsocoi 9534   CNF ccnf 9686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-seqom 8469  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-oi 9535  df-cnf 9687
This theorem is referenced by:  cantnfp1lem3  9705
  Copyright terms: Public domain W3C validator