Proof of Theorem cantnfp1lem2
Step | Hyp | Ref
| Expression |
1 | | cantnfp1.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
2 | | cantnfp1.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) |
3 | | iftrue 4465 |
. . . . . . . . 9
⊢ (𝑡 = 𝑋 → if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡)) = 𝑌) |
4 | | cantnfp1.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝐴) |
5 | 2, 3, 1, 4 | fvmptd3 6898 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑋) = 𝑌) |
6 | | cantnfp1.e |
. . . . . . . . 9
⊢ (𝜑 → ∅ ∈ 𝑌) |
7 | 6 | ne0d 4269 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ≠ ∅) |
8 | 5, 7 | eqnetrd 3011 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑋) ≠ ∅) |
9 | 4 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → 𝑌 ∈ 𝐴) |
10 | | cantnfp1.g |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
11 | | cantnfs.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
12 | | cantnfs.a |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ On) |
13 | | cantnfs.b |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈ On) |
14 | 11, 12, 13 | cantnfs 9424 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
15 | 10, 14 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
16 | 15 | simpld 495 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
17 | 16 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (𝐺‘𝑡) ∈ 𝐴) |
18 | 9, 17 | ifcld 4505 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡)) ∈ 𝐴) |
19 | 18, 2 | fmptd 6988 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
20 | 19 | ffnd 6601 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn 𝐵) |
21 | 6 | elexd 3452 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈
V) |
22 | | elsuppfn 7987 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) →
(𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ≠ ∅))) |
23 | 20, 13, 21, 22 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ≠ ∅))) |
24 | 1, 8, 23 | mpbir2and 710 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐹 supp ∅)) |
25 | | n0i 4267 |
. . . . . 6
⊢ (𝑋 ∈ (𝐹 supp ∅) → ¬ (𝐹 supp ∅) =
∅) |
26 | 24, 25 | syl 17 |
. . . . 5
⊢ (𝜑 → ¬ (𝐹 supp ∅) = ∅) |
27 | | ovexd 7310 |
. . . . . . 7
⊢ (𝜑 → (𝐹 supp ∅) ∈ V) |
28 | | cantnfp1.o |
. . . . . . . . 9
⊢ 𝑂 = OrdIso( E , (𝐹 supp ∅)) |
29 | | cantnfp1.s |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝑋) |
30 | 11, 12, 13, 10, 1, 4, 29, 2 | cantnfp1lem1 9436 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
31 | 11, 12, 13, 28, 30 | cantnfcl 9425 |
. . . . . . . 8
⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝑂 ∈ ω)) |
32 | 31 | simpld 495 |
. . . . . . 7
⊢ (𝜑 → E We (𝐹 supp ∅)) |
33 | 28 | oien 9297 |
. . . . . . 7
⊢ (((𝐹 supp ∅) ∈ V ∧ E
We (𝐹 supp ∅)) →
dom 𝑂 ≈ (𝐹 supp ∅)) |
34 | 27, 32, 33 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → dom 𝑂 ≈ (𝐹 supp ∅)) |
35 | | breq1 5077 |
. . . . . . 7
⊢ (dom
𝑂 = ∅ → (dom
𝑂 ≈ (𝐹 supp ∅) ↔ ∅
≈ (𝐹 supp
∅))) |
36 | | ensymb 8788 |
. . . . . . . 8
⊢ (∅
≈ (𝐹 supp ∅)
↔ (𝐹 supp ∅)
≈ ∅) |
37 | | en0 8803 |
. . . . . . . 8
⊢ ((𝐹 supp ∅) ≈ ∅
↔ (𝐹 supp ∅) =
∅) |
38 | 36, 37 | bitri 274 |
. . . . . . 7
⊢ (∅
≈ (𝐹 supp ∅)
↔ (𝐹 supp ∅) =
∅) |
39 | 35, 38 | bitrdi 287 |
. . . . . 6
⊢ (dom
𝑂 = ∅ → (dom
𝑂 ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) =
∅)) |
40 | 34, 39 | syl5ibcom 244 |
. . . . 5
⊢ (𝜑 → (dom 𝑂 = ∅ → (𝐹 supp ∅) = ∅)) |
41 | 26, 40 | mtod 197 |
. . . 4
⊢ (𝜑 → ¬ dom 𝑂 = ∅) |
42 | 31 | simprd 496 |
. . . . 5
⊢ (𝜑 → dom 𝑂 ∈ ω) |
43 | | nnlim 7726 |
. . . . 5
⊢ (dom
𝑂 ∈ ω →
¬ Lim dom 𝑂) |
44 | 42, 43 | syl 17 |
. . . 4
⊢ (𝜑 → ¬ Lim dom 𝑂) |
45 | | ioran 981 |
. . . 4
⊢ (¬
(dom 𝑂 = ∅ ∨ Lim
dom 𝑂) ↔ (¬ dom
𝑂 = ∅ ∧ ¬ Lim
dom 𝑂)) |
46 | 41, 44, 45 | sylanbrc 583 |
. . 3
⊢ (𝜑 → ¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)) |
47 | | nnord 7720 |
. . . 4
⊢ (dom
𝑂 ∈ ω → Ord
dom 𝑂) |
48 | | unizlim 6383 |
. . . 4
⊢ (Ord dom
𝑂 → (dom 𝑂 = ∪
dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))) |
49 | 42, 47, 48 | 3syl 18 |
. . 3
⊢ (𝜑 → (dom 𝑂 = ∪ dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))) |
50 | 46, 49 | mtbird 325 |
. 2
⊢ (𝜑 → ¬ dom 𝑂 = ∪
dom 𝑂) |
51 | | orduniorsuc 7677 |
. . . 4
⊢ (Ord dom
𝑂 → (dom 𝑂 = ∪
dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂)) |
52 | 42, 47, 51 | 3syl 18 |
. . 3
⊢ (𝜑 → (dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom
𝑂)) |
53 | 52 | ord 861 |
. 2
⊢ (𝜑 → (¬ dom 𝑂 = ∪
dom 𝑂 → dom 𝑂 = suc ∪ dom 𝑂)) |
54 | 50, 53 | mpd 15 |
1
⊢ (𝜑 → dom 𝑂 = suc ∪ dom
𝑂) |