MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem2 Structured version   Visualization version   GIF version

Theorem cantnfp1lem2 9688
Description: Lemma for cantnfp1 9690. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
cantnfp1.e (𝜑 → ∅ ∈ 𝑌)
cantnfp1.o 𝑂 = OrdIso( E , (𝐹 supp ∅))
Assertion
Ref Expression
cantnfp1lem2 (𝜑 → dom 𝑂 = suc dom 𝑂)
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hints:   𝐹(𝑡)   𝑂(𝑡)

Proof of Theorem cantnfp1lem2
StepHypRef Expression
1 cantnfp1.x . . . . . . 7 (𝜑𝑋𝐵)
2 cantnfp1.f . . . . . . . . 9 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
3 iftrue 4530 . . . . . . . . 9 (𝑡 = 𝑋 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = 𝑌)
4 cantnfp1.y . . . . . . . . 9 (𝜑𝑌𝐴)
52, 3, 1, 4fvmptd3 7022 . . . . . . . 8 (𝜑 → (𝐹𝑋) = 𝑌)
6 cantnfp1.e . . . . . . . . 9 (𝜑 → ∅ ∈ 𝑌)
76ne0d 4331 . . . . . . . 8 (𝜑𝑌 ≠ ∅)
85, 7eqnetrd 3003 . . . . . . 7 (𝜑 → (𝐹𝑋) ≠ ∅)
94adantr 480 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → 𝑌𝐴)
10 cantnfp1.g . . . . . . . . . . . . . 14 (𝜑𝐺𝑆)
11 cantnfs.s . . . . . . . . . . . . . . 15 𝑆 = dom (𝐴 CNF 𝐵)
12 cantnfs.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ On)
13 cantnfs.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ On)
1411, 12, 13cantnfs 9675 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
1510, 14mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1615simpld 494 . . . . . . . . . . . 12 (𝜑𝐺:𝐵𝐴)
1716ffvelcdmda 7088 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
189, 17ifcld 4570 . . . . . . . . . 10 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
1918, 2fmptd 7118 . . . . . . . . 9 (𝜑𝐹:𝐵𝐴)
2019ffnd 6717 . . . . . . . 8 (𝜑𝐹 Fn 𝐵)
216elexd 3490 . . . . . . . 8 (𝜑 → ∅ ∈ V)
22 elsuppfn 8167 . . . . . . . 8 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
2320, 13, 21, 22syl3anc 1369 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
241, 8, 23mpbir2and 712 . . . . . 6 (𝜑𝑋 ∈ (𝐹 supp ∅))
25 n0i 4329 . . . . . 6 (𝑋 ∈ (𝐹 supp ∅) → ¬ (𝐹 supp ∅) = ∅)
2624, 25syl 17 . . . . 5 (𝜑 → ¬ (𝐹 supp ∅) = ∅)
27 ovexd 7449 . . . . . . 7 (𝜑 → (𝐹 supp ∅) ∈ V)
28 cantnfp1.o . . . . . . . . 9 𝑂 = OrdIso( E , (𝐹 supp ∅))
29 cantnfp1.s . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
3011, 12, 13, 10, 1, 4, 29, 2cantnfp1lem1 9687 . . . . . . . . 9 (𝜑𝐹𝑆)
3111, 12, 13, 28, 30cantnfcl 9676 . . . . . . . 8 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝑂 ∈ ω))
3231simpld 494 . . . . . . 7 (𝜑 → E We (𝐹 supp ∅))
3328oien 9547 . . . . . . 7 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝑂 ≈ (𝐹 supp ∅))
3427, 32, 33syl2anc 583 . . . . . 6 (𝜑 → dom 𝑂 ≈ (𝐹 supp ∅))
35 breq1 5145 . . . . . . 7 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐹 supp ∅) ↔ ∅ ≈ (𝐹 supp ∅)))
36 ensymb 9012 . . . . . . . 8 (∅ ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) ≈ ∅)
37 en0 9027 . . . . . . . 8 ((𝐹 supp ∅) ≈ ∅ ↔ (𝐹 supp ∅) = ∅)
3836, 37bitri 275 . . . . . . 7 (∅ ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) = ∅)
3935, 38bitrdi 287 . . . . . 6 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) = ∅))
4034, 39syl5ibcom 244 . . . . 5 (𝜑 → (dom 𝑂 = ∅ → (𝐹 supp ∅) = ∅))
4126, 40mtod 197 . . . 4 (𝜑 → ¬ dom 𝑂 = ∅)
4231simprd 495 . . . . 5 (𝜑 → dom 𝑂 ∈ ω)
43 nnlim 7876 . . . . 5 (dom 𝑂 ∈ ω → ¬ Lim dom 𝑂)
4442, 43syl 17 . . . 4 (𝜑 → ¬ Lim dom 𝑂)
45 ioran 982 . . . 4 (¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂) ↔ (¬ dom 𝑂 = ∅ ∧ ¬ Lim dom 𝑂))
4641, 44, 45sylanbrc 582 . . 3 (𝜑 → ¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))
47 nnord 7870 . . . 4 (dom 𝑂 ∈ ω → Ord dom 𝑂)
48 unizlim 6486 . . . 4 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
4942, 47, 483syl 18 . . 3 (𝜑 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
5046, 49mtbird 325 . 2 (𝜑 → ¬ dom 𝑂 = dom 𝑂)
51 orduniorsuc 7825 . . . 4 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
5242, 47, 513syl 18 . . 3 (𝜑 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
5352ord 863 . 2 (𝜑 → (¬ dom 𝑂 = dom 𝑂 → dom 𝑂 = suc dom 𝑂))
5450, 53mpd 15 1 (𝜑 → dom 𝑂 = suc dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  wne 2935  Vcvv 3469  wss 3944  c0 4318  ifcif 4524   cuni 4903   class class class wbr 5142  cmpt 5225   E cep 5575   We wwe 5626  dom cdm 5672  Ord word 6362  Oncon0 6363  Lim wlim 6364  suc csuc 6365   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  ωcom 7862   supp csupp 8157  cen 8950   finSupp cfsupp 9375  OrdIsocoi 9518   CNF ccnf 9670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-2nd 7986  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-seqom 8460  df-1o 8478  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9376  df-oi 9519  df-cnf 9671
This theorem is referenced by:  cantnfp1lem3  9689
  Copyright terms: Public domain W3C validator