MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem2 Structured version   Visualization version   GIF version

Theorem cantnfp1lem2 9748
Description: Lemma for cantnfp1 9750. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
cantnfp1.e (𝜑 → ∅ ∈ 𝑌)
cantnfp1.o 𝑂 = OrdIso( E , (𝐹 supp ∅))
Assertion
Ref Expression
cantnfp1lem2 (𝜑 → dom 𝑂 = suc dom 𝑂)
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hints:   𝐹(𝑡)   𝑂(𝑡)

Proof of Theorem cantnfp1lem2
StepHypRef Expression
1 cantnfp1.x . . . . . . 7 (𝜑𝑋𝐵)
2 cantnfp1.f . . . . . . . . 9 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
3 iftrue 4554 . . . . . . . . 9 (𝑡 = 𝑋 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = 𝑌)
4 cantnfp1.y . . . . . . . . 9 (𝜑𝑌𝐴)
52, 3, 1, 4fvmptd3 7052 . . . . . . . 8 (𝜑 → (𝐹𝑋) = 𝑌)
6 cantnfp1.e . . . . . . . . 9 (𝜑 → ∅ ∈ 𝑌)
76ne0d 4365 . . . . . . . 8 (𝜑𝑌 ≠ ∅)
85, 7eqnetrd 3014 . . . . . . 7 (𝜑 → (𝐹𝑋) ≠ ∅)
94adantr 480 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → 𝑌𝐴)
10 cantnfp1.g . . . . . . . . . . . . . 14 (𝜑𝐺𝑆)
11 cantnfs.s . . . . . . . . . . . . . . 15 𝑆 = dom (𝐴 CNF 𝐵)
12 cantnfs.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ On)
13 cantnfs.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ On)
1411, 12, 13cantnfs 9735 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
1510, 14mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1615simpld 494 . . . . . . . . . . . 12 (𝜑𝐺:𝐵𝐴)
1716ffvelcdmda 7118 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
189, 17ifcld 4594 . . . . . . . . . 10 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
1918, 2fmptd 7148 . . . . . . . . 9 (𝜑𝐹:𝐵𝐴)
2019ffnd 6748 . . . . . . . 8 (𝜑𝐹 Fn 𝐵)
216elexd 3512 . . . . . . . 8 (𝜑 → ∅ ∈ V)
22 elsuppfn 8211 . . . . . . . 8 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
2320, 13, 21, 22syl3anc 1371 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
241, 8, 23mpbir2and 712 . . . . . 6 (𝜑𝑋 ∈ (𝐹 supp ∅))
25 n0i 4363 . . . . . 6 (𝑋 ∈ (𝐹 supp ∅) → ¬ (𝐹 supp ∅) = ∅)
2624, 25syl 17 . . . . 5 (𝜑 → ¬ (𝐹 supp ∅) = ∅)
27 ovexd 7483 . . . . . . 7 (𝜑 → (𝐹 supp ∅) ∈ V)
28 cantnfp1.o . . . . . . . . 9 𝑂 = OrdIso( E , (𝐹 supp ∅))
29 cantnfp1.s . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
3011, 12, 13, 10, 1, 4, 29, 2cantnfp1lem1 9747 . . . . . . . . 9 (𝜑𝐹𝑆)
3111, 12, 13, 28, 30cantnfcl 9736 . . . . . . . 8 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝑂 ∈ ω))
3231simpld 494 . . . . . . 7 (𝜑 → E We (𝐹 supp ∅))
3328oien 9607 . . . . . . 7 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝑂 ≈ (𝐹 supp ∅))
3427, 32, 33syl2anc 583 . . . . . 6 (𝜑 → dom 𝑂 ≈ (𝐹 supp ∅))
35 breq1 5169 . . . . . . 7 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐹 supp ∅) ↔ ∅ ≈ (𝐹 supp ∅)))
36 ensymb 9062 . . . . . . . 8 (∅ ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) ≈ ∅)
37 en0 9078 . . . . . . . 8 ((𝐹 supp ∅) ≈ ∅ ↔ (𝐹 supp ∅) = ∅)
3836, 37bitri 275 . . . . . . 7 (∅ ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) = ∅)
3935, 38bitrdi 287 . . . . . 6 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) = ∅))
4034, 39syl5ibcom 245 . . . . 5 (𝜑 → (dom 𝑂 = ∅ → (𝐹 supp ∅) = ∅))
4126, 40mtod 198 . . . 4 (𝜑 → ¬ dom 𝑂 = ∅)
4231simprd 495 . . . . 5 (𝜑 → dom 𝑂 ∈ ω)
43 nnlim 7917 . . . . 5 (dom 𝑂 ∈ ω → ¬ Lim dom 𝑂)
4442, 43syl 17 . . . 4 (𝜑 → ¬ Lim dom 𝑂)
45 ioran 984 . . . 4 (¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂) ↔ (¬ dom 𝑂 = ∅ ∧ ¬ Lim dom 𝑂))
4641, 44, 45sylanbrc 582 . . 3 (𝜑 → ¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))
47 nnord 7911 . . . 4 (dom 𝑂 ∈ ω → Ord dom 𝑂)
48 unizlim 6518 . . . 4 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
4942, 47, 483syl 18 . . 3 (𝜑 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
5046, 49mtbird 325 . 2 (𝜑 → ¬ dom 𝑂 = dom 𝑂)
51 orduniorsuc 7866 . . . 4 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
5242, 47, 513syl 18 . . 3 (𝜑 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
5352ord 863 . 2 (𝜑 → (¬ dom 𝑂 = dom 𝑂 → dom 𝑂 = suc dom 𝑂))
5450, 53mpd 15 1 (𝜑 → dom 𝑂 = suc dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  wss 3976  c0 4352  ifcif 4548   cuni 4931   class class class wbr 5166  cmpt 5249   E cep 5598   We wwe 5651  dom cdm 5700  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903   supp csupp 8201  cen 9000   finSupp cfsupp 9431  OrdIsocoi 9578   CNF ccnf 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-cnf 9731
This theorem is referenced by:  cantnfp1lem3  9749
  Copyright terms: Public domain W3C validator