MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem2 Structured version   Visualization version   GIF version

Theorem cantnfp1lem2 9673
Description: Lemma for cantnfp1 9675. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
cantnfp1.e (𝜑 → ∅ ∈ 𝑌)
cantnfp1.o 𝑂 = OrdIso( E , (𝐹 supp ∅))
Assertion
Ref Expression
cantnfp1lem2 (𝜑 → dom 𝑂 = suc dom 𝑂)
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hints:   𝐹(𝑡)   𝑂(𝑡)

Proof of Theorem cantnfp1lem2
StepHypRef Expression
1 cantnfp1.x . . . . . . 7 (𝜑𝑋𝐵)
2 cantnfp1.f . . . . . . . . 9 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
3 iftrue 4534 . . . . . . . . 9 (𝑡 = 𝑋 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = 𝑌)
4 cantnfp1.y . . . . . . . . 9 (𝜑𝑌𝐴)
52, 3, 1, 4fvmptd3 7021 . . . . . . . 8 (𝜑 → (𝐹𝑋) = 𝑌)
6 cantnfp1.e . . . . . . . . 9 (𝜑 → ∅ ∈ 𝑌)
76ne0d 4335 . . . . . . . 8 (𝜑𝑌 ≠ ∅)
85, 7eqnetrd 3008 . . . . . . 7 (𝜑 → (𝐹𝑋) ≠ ∅)
94adantr 481 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → 𝑌𝐴)
10 cantnfp1.g . . . . . . . . . . . . . 14 (𝜑𝐺𝑆)
11 cantnfs.s . . . . . . . . . . . . . . 15 𝑆 = dom (𝐴 CNF 𝐵)
12 cantnfs.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ On)
13 cantnfs.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ On)
1411, 12, 13cantnfs 9660 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
1510, 14mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1615simpld 495 . . . . . . . . . . . 12 (𝜑𝐺:𝐵𝐴)
1716ffvelcdmda 7086 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
189, 17ifcld 4574 . . . . . . . . . 10 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
1918, 2fmptd 7113 . . . . . . . . 9 (𝜑𝐹:𝐵𝐴)
2019ffnd 6718 . . . . . . . 8 (𝜑𝐹 Fn 𝐵)
216elexd 3494 . . . . . . . 8 (𝜑 → ∅ ∈ V)
22 elsuppfn 8155 . . . . . . . 8 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
2320, 13, 21, 22syl3anc 1371 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
241, 8, 23mpbir2and 711 . . . . . 6 (𝜑𝑋 ∈ (𝐹 supp ∅))
25 n0i 4333 . . . . . 6 (𝑋 ∈ (𝐹 supp ∅) → ¬ (𝐹 supp ∅) = ∅)
2624, 25syl 17 . . . . 5 (𝜑 → ¬ (𝐹 supp ∅) = ∅)
27 ovexd 7443 . . . . . . 7 (𝜑 → (𝐹 supp ∅) ∈ V)
28 cantnfp1.o . . . . . . . . 9 𝑂 = OrdIso( E , (𝐹 supp ∅))
29 cantnfp1.s . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
3011, 12, 13, 10, 1, 4, 29, 2cantnfp1lem1 9672 . . . . . . . . 9 (𝜑𝐹𝑆)
3111, 12, 13, 28, 30cantnfcl 9661 . . . . . . . 8 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝑂 ∈ ω))
3231simpld 495 . . . . . . 7 (𝜑 → E We (𝐹 supp ∅))
3328oien 9532 . . . . . . 7 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝑂 ≈ (𝐹 supp ∅))
3427, 32, 33syl2anc 584 . . . . . 6 (𝜑 → dom 𝑂 ≈ (𝐹 supp ∅))
35 breq1 5151 . . . . . . 7 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐹 supp ∅) ↔ ∅ ≈ (𝐹 supp ∅)))
36 ensymb 8997 . . . . . . . 8 (∅ ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) ≈ ∅)
37 en0 9012 . . . . . . . 8 ((𝐹 supp ∅) ≈ ∅ ↔ (𝐹 supp ∅) = ∅)
3836, 37bitri 274 . . . . . . 7 (∅ ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) = ∅)
3935, 38bitrdi 286 . . . . . 6 (dom 𝑂 = ∅ → (dom 𝑂 ≈ (𝐹 supp ∅) ↔ (𝐹 supp ∅) = ∅))
4034, 39syl5ibcom 244 . . . . 5 (𝜑 → (dom 𝑂 = ∅ → (𝐹 supp ∅) = ∅))
4126, 40mtod 197 . . . 4 (𝜑 → ¬ dom 𝑂 = ∅)
4231simprd 496 . . . . 5 (𝜑 → dom 𝑂 ∈ ω)
43 nnlim 7868 . . . . 5 (dom 𝑂 ∈ ω → ¬ Lim dom 𝑂)
4442, 43syl 17 . . . 4 (𝜑 → ¬ Lim dom 𝑂)
45 ioran 982 . . . 4 (¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂) ↔ (¬ dom 𝑂 = ∅ ∧ ¬ Lim dom 𝑂))
4641, 44, 45sylanbrc 583 . . 3 (𝜑 → ¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))
47 nnord 7862 . . . 4 (dom 𝑂 ∈ ω → Ord dom 𝑂)
48 unizlim 6487 . . . 4 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
4942, 47, 483syl 18 . . 3 (𝜑 → (dom 𝑂 = dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)))
5046, 49mtbird 324 . 2 (𝜑 → ¬ dom 𝑂 = dom 𝑂)
51 orduniorsuc 7817 . . . 4 (Ord dom 𝑂 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
5242, 47, 513syl 18 . . 3 (𝜑 → (dom 𝑂 = dom 𝑂 ∨ dom 𝑂 = suc dom 𝑂))
5352ord 862 . 2 (𝜑 → (¬ dom 𝑂 = dom 𝑂 → dom 𝑂 = suc dom 𝑂))
5450, 53mpd 15 1 (𝜑 → dom 𝑂 = suc dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  wss 3948  c0 4322  ifcif 4528   cuni 4908   class class class wbr 5148  cmpt 5231   E cep 5579   We wwe 5630  dom cdm 5676  Ord word 6363  Oncon0 6364  Lim wlim 6365  suc csuc 6366   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7408  ωcom 7854   supp csupp 8145  cen 8935   finSupp cfsupp 9360  OrdIsocoi 9503   CNF ccnf 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-seqom 8447  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-oi 9504  df-cnf 9656
This theorem is referenced by:  cantnfp1lem3  9674
  Copyright terms: Public domain W3C validator