MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2lem Structured version   Visualization version   GIF version

Theorem cnfcom2lem 9389
Description: Lemma for cnfcom2 9390. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑o 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom.t 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom.w 𝑊 = (𝐺 dom 𝐺)
cnfcom2.1 (𝜑 → ∅ ∈ 𝐵)
Assertion
Ref Expression
cnfcom2lem (𝜑 → dom 𝐺 = suc dom 𝐺)
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑥,𝑊   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧   𝜑,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑊(𝑧,𝑓,𝑘)

Proof of Theorem cnfcom2lem
StepHypRef Expression
1 cnfcom2.1 . . . . . 6 (𝜑 → ∅ ∈ 𝐵)
2 n0i 4264 . . . . . 6 (∅ ∈ 𝐵 → ¬ 𝐵 = ∅)
31, 2syl 17 . . . . 5 (𝜑 → ¬ 𝐵 = ∅)
4 cnfcom.f . . . . . . . . . . . . . 14 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.s . . . . . . . . . . . . . . . . 17 𝑆 = dom (ω CNF 𝐴)
6 omelon 9334 . . . . . . . . . . . . . . . . . 18 ω ∈ On
76a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ω ∈ On)
8 cnfcom.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ On)
95, 7, 8cantnff1o 9384 . . . . . . . . . . . . . . . 16 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴))
10 f1ocnv 6712 . . . . . . . . . . . . . . . 16 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) → (ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆)
11 f1of 6700 . . . . . . . . . . . . . . . 16 ((ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
129, 10, 113syl 18 . . . . . . . . . . . . . . 15 (𝜑(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
13 cnfcom.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ (ω ↑o 𝐴))
1412, 13ffvelrnd 6944 . . . . . . . . . . . . . 14 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
154, 14eqeltrid 2843 . . . . . . . . . . . . 13 (𝜑𝐹𝑆)
165, 7, 8cantnfs 9354 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)))
1715, 16mpbid 231 . . . . . . . . . . . 12 (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))
1817simpld 494 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ω)
1918adantr 480 . . . . . . . . . 10 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹:𝐴⟶ω)
2019feqmptd 6819 . . . . . . . . 9 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
21 dif0 4303 . . . . . . . . . . . 12 (𝐴 ∖ ∅) = 𝐴
2221eleq2i 2830 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ ∅) ↔ 𝑥𝐴)
23 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ dom 𝐺 = ∅) → dom 𝐺 = ∅)
24 ovexd 7290 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 supp ∅) ∈ V)
25 cnfcom.g . . . . . . . . . . . . . . . . . . . 20 𝐺 = OrdIso( E , (𝐹 supp ∅))
265, 7, 8, 25, 15cantnfcl 9355 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
2726simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑 → E We (𝐹 supp ∅))
2825oien 9227 . . . . . . . . . . . . . . . . . 18 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅))
2924, 27, 28syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅))
3029adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ dom 𝐺 = ∅) → dom 𝐺 ≈ (𝐹 supp ∅))
3123, 30eqbrtrrd 5094 . . . . . . . . . . . . . . 15 ((𝜑 ∧ dom 𝐺 = ∅) → ∅ ≈ (𝐹 supp ∅))
3231ensymd 8746 . . . . . . . . . . . . . 14 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) ≈ ∅)
33 en0 8758 . . . . . . . . . . . . . 14 ((𝐹 supp ∅) ≈ ∅ ↔ (𝐹 supp ∅) = ∅)
3432, 33sylib 217 . . . . . . . . . . . . 13 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) = ∅)
35 ss0b 4328 . . . . . . . . . . . . 13 ((𝐹 supp ∅) ⊆ ∅ ↔ (𝐹 supp ∅) = ∅)
3634, 35sylibr 233 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) ⊆ ∅)
378adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐴 ∈ On)
38 0ex 5226 . . . . . . . . . . . . 13 ∅ ∈ V
3938a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → ∅ ∈ V)
4019, 36, 37, 39suppssr 7983 . . . . . . . . . . 11 (((𝜑 ∧ dom 𝐺 = ∅) ∧ 𝑥 ∈ (𝐴 ∖ ∅)) → (𝐹𝑥) = ∅)
4122, 40sylan2br 594 . . . . . . . . . 10 (((𝜑 ∧ dom 𝐺 = ∅) ∧ 𝑥𝐴) → (𝐹𝑥) = ∅)
4241mpteq2dva 5170 . . . . . . . . 9 ((𝜑 ∧ dom 𝐺 = ∅) → (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ ∅))
4320, 42eqtrd 2778 . . . . . . . 8 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝑥𝐴 ↦ ∅))
44 fconstmpt 5640 . . . . . . . 8 (𝐴 × {∅}) = (𝑥𝐴 ↦ ∅)
4543, 44eqtr4di 2797 . . . . . . 7 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝐴 × {∅}))
4645fveq2d 6760 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘(𝐴 × {∅})))
474fveq2i 6759 . . . . . . . 8 ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵))
48 f1ocnvfv2 7130 . . . . . . . . 9 (((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) ∧ 𝐵 ∈ (ω ↑o 𝐴)) → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
499, 13, 48syl2anc 583 . . . . . . . 8 (𝜑 → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5047, 49eqtrid 2790 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘𝐹) = 𝐵)
5150adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘𝐹) = 𝐵)
52 peano1 7710 . . . . . . . . 9 ∅ ∈ ω
5352a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ ω)
545, 7, 8, 53cantnf0 9363 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘(𝐴 × {∅})) = ∅)
5554adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘(𝐴 × {∅})) = ∅)
5646, 51, 553eqtr3d 2786 . . . . 5 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐵 = ∅)
573, 56mtand 812 . . . 4 (𝜑 → ¬ dom 𝐺 = ∅)
58 nnlim 7701 . . . . 5 (dom 𝐺 ∈ ω → ¬ Lim dom 𝐺)
5926, 58simpl2im 503 . . . 4 (𝜑 → ¬ Lim dom 𝐺)
60 ioran 980 . . . 4 (¬ (dom 𝐺 = ∅ ∨ Lim dom 𝐺) ↔ (¬ dom 𝐺 = ∅ ∧ ¬ Lim dom 𝐺))
6157, 59, 60sylanbrc 582 . . 3 (𝜑 → ¬ (dom 𝐺 = ∅ ∨ Lim dom 𝐺))
6225oicl 9218 . . . 4 Ord dom 𝐺
63 unizlim 6368 . . . 4 (Ord dom 𝐺 → (dom 𝐺 = dom 𝐺 ↔ (dom 𝐺 = ∅ ∨ Lim dom 𝐺)))
6462, 63ax-mp 5 . . 3 (dom 𝐺 = dom 𝐺 ↔ (dom 𝐺 = ∅ ∨ Lim dom 𝐺))
6561, 64sylnibr 328 . 2 (𝜑 → ¬ dom 𝐺 = dom 𝐺)
66 orduniorsuc 7652 . . . 4 (Ord dom 𝐺 → (dom 𝐺 = dom 𝐺 ∨ dom 𝐺 = suc dom 𝐺))
6762, 66mp1i 13 . . 3 (𝜑 → (dom 𝐺 = dom 𝐺 ∨ dom 𝐺 = suc dom 𝐺))
6867ord 860 . 2 (𝜑 → (¬ dom 𝐺 = dom 𝐺 → dom 𝐺 = suc dom 𝐺))
6965, 68mpd 15 1 (𝜑 → dom 𝐺 = suc dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  wss 3883  c0 4253  {csn 4558   cuni 4836   class class class wbr 5070  cmpt 5153   E cep 5485   We wwe 5534   × cxp 5578  ccnv 5579  dom cdm 5580  Ord word 6250  Oncon0 6251  Lim wlim 6252  suc csuc 6253  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cmpo 7257  ωcom 7687   supp csupp 7948  seqωcseqom 8248   +o coa 8264   ·o comu 8265  o coe 8266  cen 8688   finSupp cfsupp 9058  OrdIsocoi 9198   CNF ccnf 9349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-cnf 9350
This theorem is referenced by:  cnfcom2  9390  cnfcom3lem  9391  cnfcom3  9392
  Copyright terms: Public domain W3C validator