MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2lem Structured version   Visualization version   GIF version

Theorem cnfcom2lem 9148
Description: Lemma for cnfcom2 9149. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑o 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom.t 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom.w 𝑊 = (𝐺 dom 𝐺)
cnfcom2.1 (𝜑 → ∅ ∈ 𝐵)
Assertion
Ref Expression
cnfcom2lem (𝜑 → dom 𝐺 = suc dom 𝐺)
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑥,𝑊   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧   𝜑,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑊(𝑧,𝑓,𝑘)

Proof of Theorem cnfcom2lem
StepHypRef Expression
1 cnfcom2.1 . . . . . 6 (𝜑 → ∅ ∈ 𝐵)
2 n0i 4249 . . . . . 6 (∅ ∈ 𝐵 → ¬ 𝐵 = ∅)
31, 2syl 17 . . . . 5 (𝜑 → ¬ 𝐵 = ∅)
4 cnfcom.f . . . . . . . . . . . . . 14 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.s . . . . . . . . . . . . . . . . 17 𝑆 = dom (ω CNF 𝐴)
6 omelon 9093 . . . . . . . . . . . . . . . . . 18 ω ∈ On
76a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ω ∈ On)
8 cnfcom.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ On)
95, 7, 8cantnff1o 9143 . . . . . . . . . . . . . . . 16 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴))
10 f1ocnv 6602 . . . . . . . . . . . . . . . 16 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) → (ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆)
11 f1of 6590 . . . . . . . . . . . . . . . 16 ((ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
129, 10, 113syl 18 . . . . . . . . . . . . . . 15 (𝜑(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
13 cnfcom.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ (ω ↑o 𝐴))
1412, 13ffvelrnd 6829 . . . . . . . . . . . . . 14 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
154, 14eqeltrid 2894 . . . . . . . . . . . . 13 (𝜑𝐹𝑆)
165, 7, 8cantnfs 9113 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)))
1715, 16mpbid 235 . . . . . . . . . . . 12 (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))
1817simpld 498 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ω)
1918adantr 484 . . . . . . . . . 10 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹:𝐴⟶ω)
2019feqmptd 6708 . . . . . . . . 9 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
21 dif0 4286 . . . . . . . . . . . 12 (𝐴 ∖ ∅) = 𝐴
2221eleq2i 2881 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ ∅) ↔ 𝑥𝐴)
23 simpr 488 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ dom 𝐺 = ∅) → dom 𝐺 = ∅)
24 ovexd 7170 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 supp ∅) ∈ V)
25 cnfcom.g . . . . . . . . . . . . . . . . . . . 20 𝐺 = OrdIso( E , (𝐹 supp ∅))
265, 7, 8, 25, 15cantnfcl 9114 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
2726simpld 498 . . . . . . . . . . . . . . . . . 18 (𝜑 → E We (𝐹 supp ∅))
2825oien 8986 . . . . . . . . . . . . . . . . . 18 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅))
2924, 27, 28syl2anc 587 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅))
3029adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ dom 𝐺 = ∅) → dom 𝐺 ≈ (𝐹 supp ∅))
3123, 30eqbrtrrd 5054 . . . . . . . . . . . . . . 15 ((𝜑 ∧ dom 𝐺 = ∅) → ∅ ≈ (𝐹 supp ∅))
3231ensymd 8543 . . . . . . . . . . . . . 14 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) ≈ ∅)
33 en0 8555 . . . . . . . . . . . . . 14 ((𝐹 supp ∅) ≈ ∅ ↔ (𝐹 supp ∅) = ∅)
3432, 33sylib 221 . . . . . . . . . . . . 13 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) = ∅)
35 ss0b 4305 . . . . . . . . . . . . 13 ((𝐹 supp ∅) ⊆ ∅ ↔ (𝐹 supp ∅) = ∅)
3634, 35sylibr 237 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) ⊆ ∅)
378adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐴 ∈ On)
38 0ex 5175 . . . . . . . . . . . . 13 ∅ ∈ V
3938a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → ∅ ∈ V)
4019, 36, 37, 39suppssr 7844 . . . . . . . . . . 11 (((𝜑 ∧ dom 𝐺 = ∅) ∧ 𝑥 ∈ (𝐴 ∖ ∅)) → (𝐹𝑥) = ∅)
4122, 40sylan2br 597 . . . . . . . . . 10 (((𝜑 ∧ dom 𝐺 = ∅) ∧ 𝑥𝐴) → (𝐹𝑥) = ∅)
4241mpteq2dva 5125 . . . . . . . . 9 ((𝜑 ∧ dom 𝐺 = ∅) → (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ ∅))
4320, 42eqtrd 2833 . . . . . . . 8 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝑥𝐴 ↦ ∅))
44 fconstmpt 5578 . . . . . . . 8 (𝐴 × {∅}) = (𝑥𝐴 ↦ ∅)
4543, 44eqtr4di 2851 . . . . . . 7 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝐴 × {∅}))
4645fveq2d 6649 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘(𝐴 × {∅})))
474fveq2i 6648 . . . . . . . 8 ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵))
48 f1ocnvfv2 7012 . . . . . . . . 9 (((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) ∧ 𝐵 ∈ (ω ↑o 𝐴)) → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
499, 13, 48syl2anc 587 . . . . . . . 8 (𝜑 → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5047, 49syl5eq 2845 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘𝐹) = 𝐵)
5150adantr 484 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘𝐹) = 𝐵)
52 peano1 7581 . . . . . . . . 9 ∅ ∈ ω
5352a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ ω)
545, 7, 8, 53cantnf0 9122 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘(𝐴 × {∅})) = ∅)
5554adantr 484 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘(𝐴 × {∅})) = ∅)
5646, 51, 553eqtr3d 2841 . . . . 5 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐵 = ∅)
573, 56mtand 815 . . . 4 (𝜑 → ¬ dom 𝐺 = ∅)
58 nnlim 7573 . . . . 5 (dom 𝐺 ∈ ω → ¬ Lim dom 𝐺)
5926, 58simpl2im 507 . . . 4 (𝜑 → ¬ Lim dom 𝐺)
60 ioran 981 . . . 4 (¬ (dom 𝐺 = ∅ ∨ Lim dom 𝐺) ↔ (¬ dom 𝐺 = ∅ ∧ ¬ Lim dom 𝐺))
6157, 59, 60sylanbrc 586 . . 3 (𝜑 → ¬ (dom 𝐺 = ∅ ∨ Lim dom 𝐺))
6225oicl 8977 . . . 4 Ord dom 𝐺
63 unizlim 6275 . . . 4 (Ord dom 𝐺 → (dom 𝐺 = dom 𝐺 ↔ (dom 𝐺 = ∅ ∨ Lim dom 𝐺)))
6462, 63ax-mp 5 . . 3 (dom 𝐺 = dom 𝐺 ↔ (dom 𝐺 = ∅ ∨ Lim dom 𝐺))
6561, 64sylnibr 332 . 2 (𝜑 → ¬ dom 𝐺 = dom 𝐺)
66 orduniorsuc 7525 . . . 4 (Ord dom 𝐺 → (dom 𝐺 = dom 𝐺 ∨ dom 𝐺 = suc dom 𝐺))
6762, 66mp1i 13 . . 3 (𝜑 → (dom 𝐺 = dom 𝐺 ∨ dom 𝐺 = suc dom 𝐺))
6867ord 861 . 2 (𝜑 → (¬ dom 𝐺 = dom 𝐺 → dom 𝐺 = suc dom 𝐺))
6965, 68mpd 15 1 (𝜑 → dom 𝐺 = suc dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  cun 3879  wss 3881  c0 4243  {csn 4525   cuni 4800   class class class wbr 5030  cmpt 5110   E cep 5429   We wwe 5477   × cxp 5517  ccnv 5518  dom cdm 5519  Ord word 6158  Oncon0 6159  Lim wlim 6160  suc csuc 6161  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cmpo 7137  ωcom 7560   supp csupp 7813  seqωcseqom 8066   +o coa 8082   ·o comu 8083  o coe 8084  cen 8489   finSupp cfsupp 8817  OrdIsocoi 8957   CNF ccnf 9108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-seqom 8067  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-oexp 8091  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-cnf 9109
This theorem is referenced by:  cnfcom2  9149  cnfcom3lem  9150  cnfcom3  9151
  Copyright terms: Public domain W3C validator