MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onun2i Structured version   Visualization version   GIF version

Theorem onun2i 6429
Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.)
Hypotheses
Ref Expression
on.1 𝐴 ∈ On
on.2 𝐵 ∈ On
Assertion
Ref Expression
onun2i (𝐴𝐵) ∈ On

Proof of Theorem onun2i
StepHypRef Expression
1 on.1 . 2 𝐴 ∈ On
2 on.2 . 2 𝐵 ∈ On
3 onun2 6416 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
41, 2, 3mp2an 692 1 (𝐴𝐵) ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  cun 3900  Oncon0 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310
This theorem is referenced by:  rankunb  9743  rankelun  9765  rankelpr  9766  inar1  10666  addsprop  27920  negsprop  27978  mulsproplem5  28060  mulsproplem6  28061  mulsproplem7  28062  mulsproplem8  28063  mulsprop  28070
  Copyright terms: Public domain W3C validator