Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onun2i | Structured version Visualization version GIF version |
Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
on.2 | ⊢ 𝐵 ∈ On |
Ref | Expression |
---|---|
onun2i | ⊢ (𝐴 ∪ 𝐵) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | on.2 | . 2 ⊢ 𝐵 ∈ On | |
3 | onun2 6387 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 ∪ cun 3890 Oncon0 6281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-ord 6284 df-on 6285 |
This theorem is referenced by: rankunb 9652 rankelun 9674 rankelpr 9675 inar1 10577 |
Copyright terms: Public domain | W3C validator |