| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onun2i | Structured version Visualization version GIF version | ||
| Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| on.2 | ⊢ 𝐵 ∈ On |
| Ref | Expression |
|---|---|
| onun2i | ⊢ (𝐴 ∪ 𝐵) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | on.2 | . 2 ⊢ 𝐵 ∈ On | |
| 3 | onun2 6423 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ∪ cun 3896 Oncon0 6313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6316 df-on 6317 |
| This theorem is referenced by: rankunb 9752 rankelun 9774 rankelpr 9775 inar1 10675 addsprop 27922 negsprop 27980 mulsproplem5 28062 mulsproplem6 28063 mulsproplem7 28064 mulsproplem8 28065 mulsprop 28072 |
| Copyright terms: Public domain | W3C validator |