MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  on0eqel Structured version   Visualization version   GIF version

Theorem on0eqel 6458
Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004.)
Assertion
Ref Expression
on0eqel (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))

Proof of Theorem on0eqel
StepHypRef Expression
1 0ss 4363 . . 3 ∅ ⊆ 𝐴
2 0elon 6387 . . . 4 ∅ ∈ On
3 onsseleq 6373 . . . 4 ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴)))
42, 3mpan 690 . . 3 (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴)))
51, 4mpbii 233 . 2 (𝐴 ∈ On → (∅ ∈ 𝐴 ∨ ∅ = 𝐴))
6 eqcom 2736 . . . 4 (∅ = 𝐴𝐴 = ∅)
76orbi2i 912 . . 3 ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (∅ ∈ 𝐴𝐴 = ∅))
8 orcom 870 . . 3 ((∅ ∈ 𝐴𝐴 = ∅) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
97, 8bitri 275 . 2 ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
105, 9sylib 218 1 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wss 3914  c0 4296  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336
This theorem is referenced by:  snsn0non  6459  onxpdisj  6460  omabs  8615  cnfcom3lem  9656  0elold  27821  onexlimgt  43232  onexoegt  43233  oe0rif  43274  oege1  43295  onmcl  43320  omabs2  43321  omcl2  43322
  Copyright terms: Public domain W3C validator