| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > on0eqel | Structured version Visualization version GIF version | ||
| Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004.) |
| Ref | Expression |
|---|---|
| on0eqel | ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | 0elon 6412 | . . . 4 ⊢ ∅ ∈ On | |
| 3 | onsseleq 6398 | . . . 4 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴))) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴))) |
| 5 | 1, 4 | mpbii 233 | . 2 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ∨ ∅ = 𝐴)) |
| 6 | eqcom 2743 | . . . 4 ⊢ (∅ = 𝐴 ↔ 𝐴 = ∅) | |
| 7 | 6 | orbi2i 912 | . . 3 ⊢ ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (∅ ∈ 𝐴 ∨ 𝐴 = ∅)) |
| 8 | orcom 870 | . . 3 ⊢ ((∅ ∈ 𝐴 ∨ 𝐴 = ∅) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
| 9 | 7, 8 | bitri 275 | . 2 ⊢ ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| 10 | 5, 9 | sylib 218 | 1 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∅c0 4313 Oncon0 6357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 |
| This theorem is referenced by: snsn0non 6484 onxpdisj 6485 omabs 8668 cnfcom3lem 9722 0elold 27878 onexlimgt 43234 onexoegt 43235 oe0rif 43276 oege1 43297 onmcl 43322 omabs2 43323 omcl2 43324 |
| Copyright terms: Public domain | W3C validator |