| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > on0eqel | Structured version Visualization version GIF version | ||
| Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004.) |
| Ref | Expression |
|---|---|
| on0eqel | ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | 0elon 6361 | . . . 4 ⊢ ∅ ∈ On | |
| 3 | onsseleq 6347 | . . . 4 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴))) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴))) |
| 5 | 1, 4 | mpbii 233 | . 2 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ∨ ∅ = 𝐴)) |
| 6 | eqcom 2738 | . . . 4 ⊢ (∅ = 𝐴 ↔ 𝐴 = ∅) | |
| 7 | 6 | orbi2i 912 | . . 3 ⊢ ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (∅ ∈ 𝐴 ∨ 𝐴 = ∅)) |
| 8 | orcom 870 | . . 3 ⊢ ((∅ ∈ 𝐴 ∨ 𝐴 = ∅) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
| 9 | 7, 8 | bitri 275 | . 2 ⊢ ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| 10 | 5, 9 | sylib 218 | 1 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4280 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 |
| This theorem is referenced by: snsn0non 6432 onxpdisj 6433 omabs 8566 cnfcom3lem 9593 0elold 27855 onexlimgt 43284 onexoegt 43285 oe0rif 43326 oege1 43347 onmcl 43372 omabs2 43373 omcl2 43374 |
| Copyright terms: Public domain | W3C validator |