![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > on0eqel | Structured version Visualization version GIF version |
Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004.) |
Ref | Expression |
---|---|
on0eqel | ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4396 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | 0elon 6418 | . . . 4 ⊢ ∅ ∈ On | |
3 | onsseleq 6405 | . . . 4 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴))) | |
4 | 2, 3 | mpan 688 | . . 3 ⊢ (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴))) |
5 | 1, 4 | mpbii 232 | . 2 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ∨ ∅ = 𝐴)) |
6 | eqcom 2739 | . . . 4 ⊢ (∅ = 𝐴 ↔ 𝐴 = ∅) | |
7 | 6 | orbi2i 911 | . . 3 ⊢ ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (∅ ∈ 𝐴 ∨ 𝐴 = ∅)) |
8 | orcom 868 | . . 3 ⊢ ((∅ ∈ 𝐴 ∨ 𝐴 = ∅) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
9 | 7, 8 | bitri 274 | . 2 ⊢ ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
10 | 5, 9 | sylib 217 | 1 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 ∅c0 4322 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 |
This theorem is referenced by: snsn0non 6489 onxpdisj 6490 omabs 8652 cnfcom3lem 9700 0elold 27628 onexlimgt 42294 onexoegt 42295 oe0rif 42337 oege1 42358 onmcl 42383 omabs2 42384 omcl2 42385 |
Copyright terms: Public domain | W3C validator |