MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  on0eqel Structured version   Visualization version   GIF version

Theorem on0eqel 6461
Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004.)
Assertion
Ref Expression
on0eqel (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))

Proof of Theorem on0eqel
StepHypRef Expression
1 0ss 4366 . . 3 ∅ ⊆ 𝐴
2 0elon 6390 . . . 4 ∅ ∈ On
3 onsseleq 6376 . . . 4 ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴)))
42, 3mpan 690 . . 3 (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴)))
51, 4mpbii 233 . 2 (𝐴 ∈ On → (∅ ∈ 𝐴 ∨ ∅ = 𝐴))
6 eqcom 2737 . . . 4 (∅ = 𝐴𝐴 = ∅)
76orbi2i 912 . . 3 ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (∅ ∈ 𝐴𝐴 = ∅))
8 orcom 870 . . 3 ((∅ ∈ 𝐴𝐴 = ∅) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
97, 8bitri 275 . 2 ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
105, 9sylib 218 1 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wss 3917  c0 4299  Oncon0 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339
This theorem is referenced by:  snsn0non  6462  onxpdisj  6463  omabs  8618  cnfcom3lem  9663  0elold  27828  onexlimgt  43239  onexoegt  43240  oe0rif  43281  oege1  43302  onmcl  43327  omabs2  43328  omcl2  43329
  Copyright terms: Public domain W3C validator