MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclscmp Structured version   Visualization version   GIF version

Theorem fclscmp 23893
Description: A space is compact iff every filter clusters. (Contributed by Jeff Hankins, 20-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclscmp (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
Distinct variable groups:   𝑓,𝐽   𝑓,𝑋

Proof of Theorem fclscmp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 𝐽 = 𝐽
21fclscmpi 23892 . . . 4 ((𝐽 ∈ Comp ∧ 𝑓 ∈ (Fil‘ 𝐽)) → (𝐽 fClus 𝑓) ≠ ∅)
32ralrimiva 3125 . . 3 (𝐽 ∈ Comp → ∀𝑓 ∈ (Fil‘ 𝐽)(𝐽 fClus 𝑓) ≠ ∅)
4 toponuni 22777 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
54fveq2d 6844 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (Fil‘𝑋) = (Fil‘ 𝐽))
65raleqdv 3296 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (Fil‘ 𝐽)(𝐽 fClus 𝑓) ≠ ∅))
73, 6imbitrrid 246 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp → ∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
8 elpwi 4566 . . . . . 6 (𝑥 ∈ 𝒫 (Clsd‘𝐽) → 𝑥 ⊆ (Clsd‘𝐽))
9 vn0 4304 . . . . . . . . . 10 V ≠ ∅
10 simpr 484 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → 𝑥 = ∅)
1110inteqd 4911 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → 𝑥 = ∅)
12 int0 4922 . . . . . . . . . . . 12 ∅ = V
1311, 12eqtrdi 2780 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → 𝑥 = V)
1413neeq1d 2984 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → ( 𝑥 ≠ ∅ ↔ V ≠ ∅))
159, 14mpbiri 258 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → 𝑥 ≠ ∅)
1615a1d 25 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅))
17 ssfii 9346 . . . . . . . . . . . . . . . 16 (𝑥 ∈ V → 𝑥 ⊆ (fi‘𝑥))
1817elv 3449 . . . . . . . . . . . . . . 15 𝑥 ⊆ (fi‘𝑥)
19 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ (Clsd‘𝐽))
201cldss2 22893 . . . . . . . . . . . . . . . . . . 19 (Clsd‘𝐽) ⊆ 𝒫 𝐽
214ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑋 = 𝐽)
2221pweqd 4576 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝒫 𝑋 = 𝒫 𝐽)
2320, 22sseqtrrid 3987 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (Clsd‘𝐽) ⊆ 𝒫 𝑋)
2419, 23sstrd 3954 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝑋)
25 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑥 ≠ ∅)
26 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → ¬ ∅ ∈ (fi‘𝑥))
27 toponmax 22789 . . . . . . . . . . . . . . . . . . 19 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2827ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑋𝐽)
29 fsubbas 23730 . . . . . . . . . . . . . . . . . 18 (𝑋𝐽 → ((fi‘𝑥) ∈ (fBas‘𝑋) ↔ (𝑥 ⊆ 𝒫 𝑋𝑥 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝑥))))
3028, 29syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → ((fi‘𝑥) ∈ (fBas‘𝑋) ↔ (𝑥 ⊆ 𝒫 𝑋𝑥 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝑥))))
3124, 25, 26, 30mpbir3and 1343 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (fi‘𝑥) ∈ (fBas‘𝑋))
32 ssfg 23735 . . . . . . . . . . . . . . . 16 ((fi‘𝑥) ∈ (fBas‘𝑋) → (fi‘𝑥) ⊆ (𝑋filGen(fi‘𝑥)))
3331, 32syl 17 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (fi‘𝑥) ⊆ (𝑋filGen(fi‘𝑥)))
3418, 33sstrid 3955 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ (𝑋filGen(fi‘𝑥)))
3534sselda 3943 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑦 ∈ (𝑋filGen(fi‘𝑥)))
36 fclssscls 23881 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑋filGen(fi‘𝑥)) → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ ((cls‘𝐽)‘𝑦))
3735, 36syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ ((cls‘𝐽)‘𝑦))
3819sselda 3943 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑦 ∈ (Clsd‘𝐽))
39 cldcls 22905 . . . . . . . . . . . . 13 (𝑦 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑦) = 𝑦)
4038, 39syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → ((cls‘𝐽)‘𝑦) = 𝑦)
4137, 40sseqtrd 3980 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑦)
4241ralrimiva 3125 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → ∀𝑦𝑥 (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑦)
43 ssint 4924 . . . . . . . . . 10 ((𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑥 ↔ ∀𝑦𝑥 (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑦)
4442, 43sylibr 234 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑥)
45 fgcl 23741 . . . . . . . . . 10 ((fi‘𝑥) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘𝑥)) ∈ (Fil‘𝑋))
46 oveq2 7377 . . . . . . . . . . . 12 (𝑓 = (𝑋filGen(fi‘𝑥)) → (𝐽 fClus 𝑓) = (𝐽 fClus (𝑋filGen(fi‘𝑥))))
4746neeq1d 2984 . . . . . . . . . . 11 (𝑓 = (𝑋filGen(fi‘𝑥)) → ((𝐽 fClus 𝑓) ≠ ∅ ↔ (𝐽 fClus (𝑋filGen(fi‘𝑥))) ≠ ∅))
4847rspcv 3581 . . . . . . . . . 10 ((𝑋filGen(fi‘𝑥)) ∈ (Fil‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ≠ ∅))
4931, 45, 483syl 18 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ≠ ∅))
50 ssn0 4363 . . . . . . . . 9 (((𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑥 ∧ (𝐽 fClus (𝑋filGen(fi‘𝑥))) ≠ ∅) → 𝑥 ≠ ∅)
5144, 49, 50syl6an 684 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅))
5216, 51pm2.61dane 3012 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅))
5352expr 456 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑥) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅)))
548, 53sylan2 593 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑥) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅)))
5554com23 86 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
5655ralrimdva 3133 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
57 topontop 22776 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
58 cmpfi 23271 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
5957, 58syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
6056, 59sylibrd 259 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝐽 ∈ Comp))
617, 60impbid 212 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  wss 3911  c0 4292  𝒫 cpw 4559   cuni 4867   cint 4906  cfv 6499  (class class class)co 7369  ficfi 9337  fBascfbas 21228  filGencfg 21229  Topctop 22756  TopOnctopon 22773  Clsdccld 22879  clsccl 22881  Compccmp 23249  Filcfil 23708   fClus cfcls 23799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1o 8411  df-2o 8412  df-en 8896  df-dom 8897  df-fin 8899  df-fi 9338  df-fbas 21237  df-fg 21238  df-top 22757  df-topon 22774  df-cld 22882  df-cls 22884  df-cmp 23250  df-fil 23709  df-fcls 23804
This theorem is referenced by:  ufilcmp  23895
  Copyright terms: Public domain W3C validator