MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclscmp Structured version   Visualization version   GIF version

Theorem fclscmp 23933
Description: A space is compact iff every filter clusters. (Contributed by Jeff Hankins, 20-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclscmp (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
Distinct variable groups:   𝑓,𝐽   𝑓,𝑋

Proof of Theorem fclscmp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 𝐽 = 𝐽
21fclscmpi 23932 . . . 4 ((𝐽 ∈ Comp ∧ 𝑓 ∈ (Fil‘ 𝐽)) → (𝐽 fClus 𝑓) ≠ ∅)
32ralrimiva 3121 . . 3 (𝐽 ∈ Comp → ∀𝑓 ∈ (Fil‘ 𝐽)(𝐽 fClus 𝑓) ≠ ∅)
4 toponuni 22817 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
54fveq2d 6830 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (Fil‘𝑋) = (Fil‘ 𝐽))
65raleqdv 3290 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (Fil‘ 𝐽)(𝐽 fClus 𝑓) ≠ ∅))
73, 6imbitrrid 246 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp → ∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
8 elpwi 4560 . . . . . 6 (𝑥 ∈ 𝒫 (Clsd‘𝐽) → 𝑥 ⊆ (Clsd‘𝐽))
9 vn0 4298 . . . . . . . . . 10 V ≠ ∅
10 simpr 484 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → 𝑥 = ∅)
1110inteqd 4904 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → 𝑥 = ∅)
12 int0 4915 . . . . . . . . . . . 12 ∅ = V
1311, 12eqtrdi 2780 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → 𝑥 = V)
1413neeq1d 2984 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → ( 𝑥 ≠ ∅ ↔ V ≠ ∅))
159, 14mpbiri 258 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → 𝑥 ≠ ∅)
1615a1d 25 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅))
17 ssfii 9328 . . . . . . . . . . . . . . . 16 (𝑥 ∈ V → 𝑥 ⊆ (fi‘𝑥))
1817elv 3443 . . . . . . . . . . . . . . 15 𝑥 ⊆ (fi‘𝑥)
19 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ (Clsd‘𝐽))
201cldss2 22933 . . . . . . . . . . . . . . . . . . 19 (Clsd‘𝐽) ⊆ 𝒫 𝐽
214ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑋 = 𝐽)
2221pweqd 4570 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝒫 𝑋 = 𝒫 𝐽)
2320, 22sseqtrrid 3981 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (Clsd‘𝐽) ⊆ 𝒫 𝑋)
2419, 23sstrd 3948 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝑋)
25 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑥 ≠ ∅)
26 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → ¬ ∅ ∈ (fi‘𝑥))
27 toponmax 22829 . . . . . . . . . . . . . . . . . . 19 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2827ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑋𝐽)
29 fsubbas 23770 . . . . . . . . . . . . . . . . . 18 (𝑋𝐽 → ((fi‘𝑥) ∈ (fBas‘𝑋) ↔ (𝑥 ⊆ 𝒫 𝑋𝑥 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝑥))))
3028, 29syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → ((fi‘𝑥) ∈ (fBas‘𝑋) ↔ (𝑥 ⊆ 𝒫 𝑋𝑥 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝑥))))
3124, 25, 26, 30mpbir3and 1343 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (fi‘𝑥) ∈ (fBas‘𝑋))
32 ssfg 23775 . . . . . . . . . . . . . . . 16 ((fi‘𝑥) ∈ (fBas‘𝑋) → (fi‘𝑥) ⊆ (𝑋filGen(fi‘𝑥)))
3331, 32syl 17 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (fi‘𝑥) ⊆ (𝑋filGen(fi‘𝑥)))
3418, 33sstrid 3949 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ (𝑋filGen(fi‘𝑥)))
3534sselda 3937 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑦 ∈ (𝑋filGen(fi‘𝑥)))
36 fclssscls 23921 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑋filGen(fi‘𝑥)) → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ ((cls‘𝐽)‘𝑦))
3735, 36syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ ((cls‘𝐽)‘𝑦))
3819sselda 3937 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑦 ∈ (Clsd‘𝐽))
39 cldcls 22945 . . . . . . . . . . . . 13 (𝑦 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑦) = 𝑦)
4038, 39syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → ((cls‘𝐽)‘𝑦) = 𝑦)
4137, 40sseqtrd 3974 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑦)
4241ralrimiva 3121 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → ∀𝑦𝑥 (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑦)
43 ssint 4917 . . . . . . . . . 10 ((𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑥 ↔ ∀𝑦𝑥 (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑦)
4442, 43sylibr 234 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑥)
45 fgcl 23781 . . . . . . . . . 10 ((fi‘𝑥) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘𝑥)) ∈ (Fil‘𝑋))
46 oveq2 7361 . . . . . . . . . . . 12 (𝑓 = (𝑋filGen(fi‘𝑥)) → (𝐽 fClus 𝑓) = (𝐽 fClus (𝑋filGen(fi‘𝑥))))
4746neeq1d 2984 . . . . . . . . . . 11 (𝑓 = (𝑋filGen(fi‘𝑥)) → ((𝐽 fClus 𝑓) ≠ ∅ ↔ (𝐽 fClus (𝑋filGen(fi‘𝑥))) ≠ ∅))
4847rspcv 3575 . . . . . . . . . 10 ((𝑋filGen(fi‘𝑥)) ∈ (Fil‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ≠ ∅))
4931, 45, 483syl 18 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ≠ ∅))
50 ssn0 4357 . . . . . . . . 9 (((𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑥 ∧ (𝐽 fClus (𝑋filGen(fi‘𝑥))) ≠ ∅) → 𝑥 ≠ ∅)
5144, 49, 50syl6an 684 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅))
5216, 51pm2.61dane 3012 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅))
5352expr 456 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑥) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅)))
548, 53sylan2 593 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑥) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅)))
5554com23 86 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
5655ralrimdva 3129 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
57 topontop 22816 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
58 cmpfi 23311 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
5957, 58syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
6056, 59sylibrd 259 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝐽 ∈ Comp))
617, 60impbid 212 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3438  wss 3905  c0 4286  𝒫 cpw 4553   cuni 4861   cint 4899  cfv 6486  (class class class)co 7353  ficfi 9319  fBascfbas 21267  filGencfg 21268  Topctop 22796  TopOnctopon 22813  Clsdccld 22919  clsccl 22921  Compccmp 23289  Filcfil 23748   fClus cfcls 23839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1o 8395  df-2o 8396  df-en 8880  df-dom 8881  df-fin 8883  df-fi 9320  df-fbas 21276  df-fg 21277  df-top 22797  df-topon 22814  df-cld 22922  df-cls 22924  df-cmp 23290  df-fil 23749  df-fcls 23844
This theorem is referenced by:  ufilcmp  23935
  Copyright terms: Public domain W3C validator