MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclscmp Structured version   Visualization version   GIF version

Theorem fclscmp 23089
Description: A space is compact iff every filter clusters. (Contributed by Jeff Hankins, 20-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclscmp (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
Distinct variable groups:   𝑓,𝐽   𝑓,𝑋

Proof of Theorem fclscmp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 𝐽 = 𝐽
21fclscmpi 23088 . . . 4 ((𝐽 ∈ Comp ∧ 𝑓 ∈ (Fil‘ 𝐽)) → (𝐽 fClus 𝑓) ≠ ∅)
32ralrimiva 3107 . . 3 (𝐽 ∈ Comp → ∀𝑓 ∈ (Fil‘ 𝐽)(𝐽 fClus 𝑓) ≠ ∅)
4 toponuni 21971 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
54fveq2d 6760 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (Fil‘𝑋) = (Fil‘ 𝐽))
65raleqdv 3339 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (Fil‘ 𝐽)(𝐽 fClus 𝑓) ≠ ∅))
73, 6syl5ibr 245 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp → ∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
8 elpwi 4539 . . . . . 6 (𝑥 ∈ 𝒫 (Clsd‘𝐽) → 𝑥 ⊆ (Clsd‘𝐽))
9 vn0 4269 . . . . . . . . . 10 V ≠ ∅
10 simpr 484 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → 𝑥 = ∅)
1110inteqd 4881 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → 𝑥 = ∅)
12 int0 4890 . . . . . . . . . . . 12 ∅ = V
1311, 12eqtrdi 2795 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → 𝑥 = V)
1413neeq1d 3002 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → ( 𝑥 ≠ ∅ ↔ V ≠ ∅))
159, 14mpbiri 257 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → 𝑥 ≠ ∅)
1615a1d 25 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 = ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅))
17 ssfii 9108 . . . . . . . . . . . . . . . 16 (𝑥 ∈ V → 𝑥 ⊆ (fi‘𝑥))
1817elv 3428 . . . . . . . . . . . . . . 15 𝑥 ⊆ (fi‘𝑥)
19 simplrl 773 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ (Clsd‘𝐽))
201cldss2 22089 . . . . . . . . . . . . . . . . . . 19 (Clsd‘𝐽) ⊆ 𝒫 𝐽
214ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑋 = 𝐽)
2221pweqd 4549 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝒫 𝑋 = 𝒫 𝐽)
2320, 22sseqtrrid 3970 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (Clsd‘𝐽) ⊆ 𝒫 𝑋)
2419, 23sstrd 3927 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝑋)
25 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑥 ≠ ∅)
26 simplrr 774 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → ¬ ∅ ∈ (fi‘𝑥))
27 toponmax 21983 . . . . . . . . . . . . . . . . . . 19 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2827ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑋𝐽)
29 fsubbas 22926 . . . . . . . . . . . . . . . . . 18 (𝑋𝐽 → ((fi‘𝑥) ∈ (fBas‘𝑋) ↔ (𝑥 ⊆ 𝒫 𝑋𝑥 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝑥))))
3028, 29syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → ((fi‘𝑥) ∈ (fBas‘𝑋) ↔ (𝑥 ⊆ 𝒫 𝑋𝑥 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝑥))))
3124, 25, 26, 30mpbir3and 1340 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (fi‘𝑥) ∈ (fBas‘𝑋))
32 ssfg 22931 . . . . . . . . . . . . . . . 16 ((fi‘𝑥) ∈ (fBas‘𝑋) → (fi‘𝑥) ⊆ (𝑋filGen(fi‘𝑥)))
3331, 32syl 17 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (fi‘𝑥) ⊆ (𝑋filGen(fi‘𝑥)))
3418, 33sstrid 3928 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ (𝑋filGen(fi‘𝑥)))
3534sselda 3917 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑦 ∈ (𝑋filGen(fi‘𝑥)))
36 fclssscls 23077 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑋filGen(fi‘𝑥)) → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ ((cls‘𝐽)‘𝑦))
3735, 36syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ ((cls‘𝐽)‘𝑦))
3819sselda 3917 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑦 ∈ (Clsd‘𝐽))
39 cldcls 22101 . . . . . . . . . . . . 13 (𝑦 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑦) = 𝑦)
4038, 39syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → ((cls‘𝐽)‘𝑦) = 𝑦)
4137, 40sseqtrd 3957 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) ∧ 𝑦𝑥) → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑦)
4241ralrimiva 3107 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → ∀𝑦𝑥 (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑦)
43 ssint 4892 . . . . . . . . . 10 ((𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑥 ↔ ∀𝑦𝑥 (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑦)
4442, 43sylibr 233 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑥)
45 fgcl 22937 . . . . . . . . . 10 ((fi‘𝑥) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘𝑥)) ∈ (Fil‘𝑋))
46 oveq2 7263 . . . . . . . . . . . 12 (𝑓 = (𝑋filGen(fi‘𝑥)) → (𝐽 fClus 𝑓) = (𝐽 fClus (𝑋filGen(fi‘𝑥))))
4746neeq1d 3002 . . . . . . . . . . 11 (𝑓 = (𝑋filGen(fi‘𝑥)) → ((𝐽 fClus 𝑓) ≠ ∅ ↔ (𝐽 fClus (𝑋filGen(fi‘𝑥))) ≠ ∅))
4847rspcv 3547 . . . . . . . . . 10 ((𝑋filGen(fi‘𝑥)) ∈ (Fil‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ≠ ∅))
4931, 45, 483syl 18 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus (𝑋filGen(fi‘𝑥))) ≠ ∅))
50 ssn0 4331 . . . . . . . . 9 (((𝐽 fClus (𝑋filGen(fi‘𝑥))) ⊆ 𝑥 ∧ (𝐽 fClus (𝑋filGen(fi‘𝑥))) ≠ ∅) → 𝑥 ≠ ∅)
5144, 49, 50syl6an 680 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) ∧ 𝑥 ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅))
5216, 51pm2.61dane 3031 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑥))) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅))
5352expr 456 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑥) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅)))
548, 53sylan2 592 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑥) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝑥 ≠ ∅)))
5554com23 86 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
5655ralrimdva 3112 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
57 topontop 21970 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
58 cmpfi 22467 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
5957, 58syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
6056, 59sylibrd 258 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝐽 ∈ Comp))
617, 60impbid 211 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836   cint 4876  cfv 6418  (class class class)co 7255  ficfi 9099  fBascfbas 20498  filGencfg 20499  Topctop 21950  TopOnctopon 21967  Clsdccld 22075  clsccl 22077  Compccmp 22445  Filcfil 22904   fClus cfcls 22995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-fin 8695  df-fi 9100  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-cld 22078  df-cls 22080  df-cmp 22446  df-fil 22905  df-fcls 23000
This theorem is referenced by:  ufilcmp  23091
  Copyright terms: Public domain W3C validator