MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wundm Structured version   Visualization version   GIF version

Theorem wundm 10797
Description: A weak universe is closed under the domain operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wundm (𝜑 → dom 𝐴𝑈)

Proof of Theorem wundm
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . 4 (𝜑𝐴𝑈)
31, 2wununi 10775 . . 3 (𝜑 𝐴𝑈)
41, 3wununi 10775 . 2 (𝜑 𝐴𝑈)
5 ssun1 4201 . . . 4 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 dmrnssfld 5996 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
75, 6sstri 4018 . . 3 dom 𝐴 𝐴
87a1i 11 . 2 (𝜑 → dom 𝐴 𝐴)
91, 4, 8wunss 10781 1 (𝜑 → dom 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cun 3974  wss 3976   cuni 4931  dom cdm 5700  ran crn 5701  WUnicwun 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-cnv 5708  df-dm 5710  df-rn 5711  df-wun 10771
This theorem is referenced by:  wuncnv  10799  wunco  10802  wuntpos  10803  catcoppccl  18184  catcoppcclOLD  18185
  Copyright terms: Public domain W3C validator