MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wundm Structured version   Visualization version   GIF version

Theorem wundm 10722
Description: A weak universe is closed under the domain operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wundm (𝜑 → dom 𝐴𝑈)

Proof of Theorem wundm
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . 4 (𝜑𝐴𝑈)
31, 2wununi 10700 . . 3 (𝜑 𝐴𝑈)
41, 3wununi 10700 . 2 (𝜑 𝐴𝑈)
5 ssun1 4172 . . . 4 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 dmrnssfld 5969 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
75, 6sstri 3991 . . 3 dom 𝐴 𝐴
87a1i 11 . 2 (𝜑 → dom 𝐴 𝐴)
91, 4, 8wunss 10706 1 (𝜑 → dom 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cun 3946  wss 3948   cuni 4908  dom cdm 5676  ran crn 5677  WUnicwun 10694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-cnv 5684  df-dm 5686  df-rn 5687  df-wun 10696
This theorem is referenced by:  wuncnv  10724  wunco  10727  wuntpos  10728  catcoppccl  18066  catcoppcclOLD  18067
  Copyright terms: Public domain W3C validator