MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wundm Structured version   Visualization version   GIF version

Theorem wundm 10765
Description: A weak universe is closed under the domain operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wundm (𝜑 → dom 𝐴𝑈)

Proof of Theorem wundm
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . 4 (𝜑𝐴𝑈)
31, 2wununi 10743 . . 3 (𝜑 𝐴𝑈)
41, 3wununi 10743 . 2 (𝜑 𝐴𝑈)
5 ssun1 4187 . . . 4 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 dmrnssfld 5986 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
75, 6sstri 4004 . . 3 dom 𝐴 𝐴
87a1i 11 . 2 (𝜑 → dom 𝐴 𝐴)
91, 4, 8wunss 10749 1 (𝜑 → dom 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cun 3960  wss 3962   cuni 4911  dom cdm 5688  ran crn 5689  WUnicwun 10737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-tr 5265  df-cnv 5696  df-dm 5698  df-rn 5699  df-wun 10739
This theorem is referenced by:  wuncnv  10767  wunco  10770  wuntpos  10771  catcoppccl  18170  catcoppcclOLD  18171
  Copyright terms: Public domain W3C validator