![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wundm | Structured version Visualization version GIF version |
Description: A weak universe is closed under the domain operator. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wundm | ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 1, 2 | wununi 10775 | . . 3 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) |
4 | 1, 3 | wununi 10775 | . 2 ⊢ (𝜑 → ∪ ∪ 𝐴 ∈ 𝑈) |
5 | ssun1 4201 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
6 | dmrnssfld 5996 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
7 | 5, 6 | sstri 4018 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → dom 𝐴 ⊆ ∪ ∪ 𝐴) |
9 | 1, 4, 8 | wunss 10781 | 1 ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 ∪ cuni 4931 dom cdm 5700 ran crn 5701 WUnicwun 10769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-cnv 5708 df-dm 5710 df-rn 5711 df-wun 10771 |
This theorem is referenced by: wuncnv 10799 wunco 10802 wuntpos 10803 catcoppccl 18184 catcoppcclOLD 18185 |
Copyright terms: Public domain | W3C validator |