MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wundm Structured version   Visualization version   GIF version

Theorem wundm 10415
Description: A weak universe is closed under the domain operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wundm (𝜑 → dom 𝐴𝑈)

Proof of Theorem wundm
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . 4 (𝜑𝐴𝑈)
31, 2wununi 10393 . . 3 (𝜑 𝐴𝑈)
41, 3wununi 10393 . 2 (𝜑 𝐴𝑈)
5 ssun1 4102 . . . 4 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 dmrnssfld 5868 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
75, 6sstri 3926 . . 3 dom 𝐴 𝐴
87a1i 11 . 2 (𝜑 → dom 𝐴 𝐴)
91, 4, 8wunss 10399 1 (𝜑 → dom 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cun 3881  wss 3883   cuni 4836  dom cdm 5580  ran crn 5581  WUnicwun 10387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-cnv 5588  df-dm 5590  df-rn 5591  df-wun 10389
This theorem is referenced by:  wuncnv  10417  wunco  10420  wuntpos  10421  catcoppccl  17748  catcoppcclOLD  17749
  Copyright terms: Public domain W3C validator