MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wundm Structured version   Visualization version   GIF version

Theorem wundm 10740
Description: A weak universe is closed under the domain operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wundm (𝜑 → dom 𝐴𝑈)

Proof of Theorem wundm
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . 4 (𝜑𝐴𝑈)
31, 2wununi 10718 . . 3 (𝜑 𝐴𝑈)
41, 3wununi 10718 . 2 (𝜑 𝐴𝑈)
5 ssun1 4153 . . . 4 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 dmrnssfld 5953 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
75, 6sstri 3968 . . 3 dom 𝐴 𝐴
87a1i 11 . 2 (𝜑 → dom 𝐴 𝐴)
91, 4, 8wunss 10724 1 (𝜑 → dom 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cun 3924  wss 3926   cuni 4883  dom cdm 5654  ran crn 5655  WUnicwun 10712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-cnv 5662  df-dm 5664  df-rn 5665  df-wun 10714
This theorem is referenced by:  wuncnv  10742  wunco  10745  wuntpos  10746  catcoppccl  18128
  Copyright terms: Public domain W3C validator