| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunco | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunco.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunco | ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wunco.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 3 | 1, 2 | wundm 10619 | . . . 4 ⊢ (𝜑 → dom 𝐵 ∈ 𝑈) |
| 4 | dmcoss 5913 | . . . . 5 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵) |
| 6 | 1, 3, 5 | wunss 10603 | . . 3 ⊢ (𝜑 → dom (𝐴 ∘ 𝐵) ∈ 𝑈) |
| 7 | wunop.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 8 | 1, 7 | wunrn 10620 | . . . 4 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
| 9 | rncoss 5915 | . . . . 5 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴) |
| 11 | 1, 8, 10 | wunss 10603 | . . 3 ⊢ (𝜑 → ran (𝐴 ∘ 𝐵) ∈ 𝑈) |
| 12 | 1, 6, 11 | wunxp 10615 | . 2 ⊢ (𝜑 → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ 𝑈) |
| 13 | relco 6056 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 14 | relssdmrn 6216 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
| 15 | 13, 14 | mp1i 13 | . 2 ⊢ (𝜑 → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) |
| 16 | 1, 12, 15 | wunss 10603 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 × cxp 5612 dom cdm 5614 ran crn 5615 ∘ ccom 5618 Rel wrel 5619 WUnicwun 10591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-wun 10593 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |