![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunco | Structured version Visualization version GIF version |
Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunco.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunco | ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunco.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
3 | 1, 2 | wundm 10725 | . . . 4 ⊢ (𝜑 → dom 𝐵 ∈ 𝑈) |
4 | dmcoss 5969 | . . . . 5 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵) |
6 | 1, 3, 5 | wunss 10709 | . . 3 ⊢ (𝜑 → dom (𝐴 ∘ 𝐵) ∈ 𝑈) |
7 | wunop.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
8 | 1, 7 | wunrn 10726 | . . . 4 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
9 | rncoss 5970 | . . . . 5 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴) |
11 | 1, 8, 10 | wunss 10709 | . . 3 ⊢ (𝜑 → ran (𝐴 ∘ 𝐵) ∈ 𝑈) |
12 | 1, 6, 11 | wunxp 10721 | . 2 ⊢ (𝜑 → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ 𝑈) |
13 | relco 6106 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
14 | relssdmrn 6266 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
15 | 13, 14 | mp1i 13 | . 2 ⊢ (𝜑 → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) |
16 | 1, 12, 15 | wunss 10709 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ⊆ wss 3947 × cxp 5673 dom cdm 5675 ran crn 5676 ∘ ccom 5679 Rel wrel 5680 WUnicwun 10697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-wun 10699 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |