MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunco Structured version   Visualization version   GIF version

Theorem wunco 10140
Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunco.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunco (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wunco
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunco.3 . . . . 5 (𝜑𝐵𝑈)
31, 2wundm 10135 . . . 4 (𝜑 → dom 𝐵𝑈)
4 dmcoss 5823 . . . . 5 dom (𝐴𝐵) ⊆ dom 𝐵
54a1i 11 . . . 4 (𝜑 → dom (𝐴𝐵) ⊆ dom 𝐵)
61, 3, 5wunss 10119 . . 3 (𝜑 → dom (𝐴𝐵) ∈ 𝑈)
7 wunop.2 . . . . 5 (𝜑𝐴𝑈)
81, 7wunrn 10136 . . . 4 (𝜑 → ran 𝐴𝑈)
9 rncoss 5824 . . . . 5 ran (𝐴𝐵) ⊆ ran 𝐴
109a1i 11 . . . 4 (𝜑 → ran (𝐴𝐵) ⊆ ran 𝐴)
111, 8, 10wunss 10119 . . 3 (𝜑 → ran (𝐴𝐵) ∈ 𝑈)
121, 6, 11wunxp 10131 . 2 (𝜑 → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ 𝑈)
13 relco 6078 . . 3 Rel (𝐴𝐵)
14 relssdmrn 6102 . . 3 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
1513, 14mp1i 13 . 2 (𝜑 → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
161, 12, 15wunss 10119 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2115  wss 3918   × cxp 5534  dom cdm 5536  ran crn 5537  ccom 5540  Rel wrel 5541  WUnicwun 10107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-opab 5110  df-tr 5154  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-wun 10109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator