| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunco | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunco.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunco | ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wunco.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 3 | 1, 2 | wundm 10681 | . . . 4 ⊢ (𝜑 → dom 𝐵 ∈ 𝑈) |
| 4 | dmcoss 5938 | . . . . 5 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵) |
| 6 | 1, 3, 5 | wunss 10665 | . . 3 ⊢ (𝜑 → dom (𝐴 ∘ 𝐵) ∈ 𝑈) |
| 7 | wunop.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 8 | 1, 7 | wunrn 10682 | . . . 4 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
| 9 | rncoss 5939 | . . . . 5 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴) |
| 11 | 1, 8, 10 | wunss 10665 | . . 3 ⊢ (𝜑 → ran (𝐴 ∘ 𝐵) ∈ 𝑈) |
| 12 | 1, 6, 11 | wunxp 10677 | . 2 ⊢ (𝜑 → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ 𝑈) |
| 13 | relco 6079 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 14 | relssdmrn 6241 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
| 15 | 13, 14 | mp1i 13 | . 2 ⊢ (𝜑 → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) |
| 16 | 1, 12, 15 | wunss 10665 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 × cxp 5636 dom cdm 5638 ran crn 5639 ∘ ccom 5642 Rel wrel 5643 WUnicwun 10653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-wun 10655 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |