![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunco | Structured version Visualization version GIF version |
Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunco.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunco | ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunco.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
3 | 1, 2 | wundm 10766 | . . . 4 ⊢ (𝜑 → dom 𝐵 ∈ 𝑈) |
4 | dmcoss 5988 | . . . . 5 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵) |
6 | 1, 3, 5 | wunss 10750 | . . 3 ⊢ (𝜑 → dom (𝐴 ∘ 𝐵) ∈ 𝑈) |
7 | wunop.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
8 | 1, 7 | wunrn 10767 | . . . 4 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
9 | rncoss 5989 | . . . . 5 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴) |
11 | 1, 8, 10 | wunss 10750 | . . 3 ⊢ (𝜑 → ran (𝐴 ∘ 𝐵) ∈ 𝑈) |
12 | 1, 6, 11 | wunxp 10762 | . 2 ⊢ (𝜑 → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ 𝑈) |
13 | relco 6129 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
14 | relssdmrn 6290 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
15 | 13, 14 | mp1i 13 | . 2 ⊢ (𝜑 → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) |
16 | 1, 12, 15 | wunss 10750 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3963 × cxp 5687 dom cdm 5689 ran crn 5690 ∘ ccom 5693 Rel wrel 5694 WUnicwun 10738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-wun 10740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |