MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunco Structured version   Visualization version   GIF version

Theorem wunco 10686
Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunco.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunco (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wunco
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunco.3 . . . . 5 (𝜑𝐵𝑈)
31, 2wundm 10681 . . . 4 (𝜑 → dom 𝐵𝑈)
4 dmcoss 5938 . . . . 5 dom (𝐴𝐵) ⊆ dom 𝐵
54a1i 11 . . . 4 (𝜑 → dom (𝐴𝐵) ⊆ dom 𝐵)
61, 3, 5wunss 10665 . . 3 (𝜑 → dom (𝐴𝐵) ∈ 𝑈)
7 wunop.2 . . . . 5 (𝜑𝐴𝑈)
81, 7wunrn 10682 . . . 4 (𝜑 → ran 𝐴𝑈)
9 rncoss 5939 . . . . 5 ran (𝐴𝐵) ⊆ ran 𝐴
109a1i 11 . . . 4 (𝜑 → ran (𝐴𝐵) ⊆ ran 𝐴)
111, 8, 10wunss 10665 . . 3 (𝜑 → ran (𝐴𝐵) ∈ 𝑈)
121, 6, 11wunxp 10677 . 2 (𝜑 → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ 𝑈)
13 relco 6079 . . 3 Rel (𝐴𝐵)
14 relssdmrn 6241 . . 3 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
1513, 14mp1i 13 . 2 (𝜑 → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
161, 12, 15wunss 10665 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3914   × cxp 5636  dom cdm 5638  ran crn 5639  ccom 5642  Rel wrel 5643  WUnicwun 10653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-wun 10655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator