Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunco | Structured version Visualization version GIF version |
Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunco.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunco | ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunco.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
3 | 1, 2 | wundm 10484 | . . . 4 ⊢ (𝜑 → dom 𝐵 ∈ 𝑈) |
4 | dmcoss 5880 | . . . . 5 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵) |
6 | 1, 3, 5 | wunss 10468 | . . 3 ⊢ (𝜑 → dom (𝐴 ∘ 𝐵) ∈ 𝑈) |
7 | wunop.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
8 | 1, 7 | wunrn 10485 | . . . 4 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
9 | rncoss 5881 | . . . . 5 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴) |
11 | 1, 8, 10 | wunss 10468 | . . 3 ⊢ (𝜑 → ran (𝐴 ∘ 𝐵) ∈ 𝑈) |
12 | 1, 6, 11 | wunxp 10480 | . 2 ⊢ (𝜑 → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ 𝑈) |
13 | relco 6148 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
14 | relssdmrn 6172 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
15 | 13, 14 | mp1i 13 | . 2 ⊢ (𝜑 → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) |
16 | 1, 12, 15 | wunss 10468 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 × cxp 5587 dom cdm 5589 ran crn 5590 ∘ ccom 5593 Rel wrel 5594 WUnicwun 10456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-wun 10458 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |