MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunrn Structured version   Visualization version   GIF version

Theorem wunrn 10673
Description: A weak universe is closed under the range operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunrn (𝜑 → ran 𝐴𝑈)

Proof of Theorem wunrn
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . 4 (𝜑𝐴𝑈)
31, 2wununi 10650 . . 3 (𝜑 𝐴𝑈)
41, 3wununi 10650 . 2 (𝜑 𝐴𝑈)
5 ssun2 4137 . . . 4 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 dmrnssfld 5929 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
75, 6sstri 3957 . . 3 ran 𝐴 𝐴
87a1i 11 . 2 (𝜑 → ran 𝐴 𝐴)
91, 4, 8wunss 10656 1 (𝜑 → ran 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cun 3912  wss 3914   cuni 4869  dom cdm 5637  ran crn 5638  WUnicwun 10644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-tr 5227  df-cnv 5645  df-dm 5647  df-rn 5648  df-wun 10646
This theorem is referenced by:  wuncnv  10674  wunfv  10676  wunco  10677  wuntpos  10678  wunstr  17068  wunfunc  17793  wunfuncOLD  17794  wunnat  17851  wunnatOLD  17852  catcoppccl  18011  catcoppcclOLD  18012  catcfuccl  18013  catcfucclOLD  18014  catcxpccl  18103  catcxpcclOLD  18104
  Copyright terms: Public domain W3C validator