MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunrn Structured version   Visualization version   GIF version

Theorem wunrn 9873
Description: A weak universe is closed under the range operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunrn (𝜑 → ran 𝐴𝑈)

Proof of Theorem wunrn
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . 4 (𝜑𝐴𝑈)
31, 2wununi 9850 . . 3 (𝜑 𝐴𝑈)
41, 3wununi 9850 . 2 (𝜑 𝐴𝑈)
5 ssun2 4006 . . . 4 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 dmrnssfld 5621 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
75, 6sstri 3836 . . 3 ran 𝐴 𝐴
87a1i 11 . 2 (𝜑 → ran 𝐴 𝐴)
91, 4, 8wunss 9856 1 (𝜑 → ran 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2164  cun 3796  wss 3798   cuni 4660  dom cdm 5346  ran crn 5347  WUnicwun 9844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-tr 4978  df-cnv 5354  df-dm 5356  df-rn 5357  df-wun 9846
This theorem is referenced by:  wuncnv  9874  wunfv  9876  wunco  9877  wuntpos  9878  wunstr  16253  wunfunc  16918  wunnat  16975  catcoppccl  17117  catcfuccl  17118  catcxpccl  17207
  Copyright terms: Public domain W3C validator