MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunrn Structured version   Visualization version   GIF version

Theorem wunrn 10485
Description: A weak universe is closed under the range operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunrn (𝜑 → ran 𝐴𝑈)

Proof of Theorem wunrn
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . 4 (𝜑𝐴𝑈)
31, 2wununi 10462 . . 3 (𝜑 𝐴𝑈)
41, 3wununi 10462 . 2 (𝜑 𝐴𝑈)
5 ssun2 4107 . . . 4 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 dmrnssfld 5879 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
75, 6sstri 3930 . . 3 ran 𝐴 𝐴
87a1i 11 . 2 (𝜑 → ran 𝐴 𝐴)
91, 4, 8wunss 10468 1 (𝜑 → ran 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cun 3885  wss 3887   cuni 4839  dom cdm 5589  ran crn 5590  WUnicwun 10456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-cnv 5597  df-dm 5599  df-rn 5600  df-wun 10458
This theorem is referenced by:  wuncnv  10486  wunfv  10488  wunco  10489  wuntpos  10490  wunstr  16889  wunfunc  17614  wunfuncOLD  17615  wunnat  17672  wunnatOLD  17673  catcoppccl  17832  catcoppcclOLD  17833  catcfuccl  17834  catcfucclOLD  17835  catcxpccl  17924  catcxpcclOLD  17925
  Copyright terms: Public domain W3C validator