MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunrn Structured version   Visualization version   GIF version

Theorem wunrn 10416
Description: A weak universe is closed under the range operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunrn (𝜑 → ran 𝐴𝑈)

Proof of Theorem wunrn
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . 4 (𝜑𝐴𝑈)
31, 2wununi 10393 . . 3 (𝜑 𝐴𝑈)
41, 3wununi 10393 . 2 (𝜑 𝐴𝑈)
5 ssun2 4103 . . . 4 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 dmrnssfld 5868 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
75, 6sstri 3926 . . 3 ran 𝐴 𝐴
87a1i 11 . 2 (𝜑 → ran 𝐴 𝐴)
91, 4, 8wunss 10399 1 (𝜑 → ran 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cun 3881  wss 3883   cuni 4836  dom cdm 5580  ran crn 5581  WUnicwun 10387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-cnv 5588  df-dm 5590  df-rn 5591  df-wun 10389
This theorem is referenced by:  wuncnv  10417  wunfv  10419  wunco  10420  wuntpos  10421  wunstr  16817  wunfunc  17530  wunfuncOLD  17531  wunnat  17588  wunnatOLD  17589  catcoppccl  17748  catcoppcclOLD  17749  catcfuccl  17750  catcfucclOLD  17751  catcxpccl  17840  catcxpcclOLD  17841
  Copyright terms: Public domain W3C validator