MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunrn Structured version   Visualization version   GIF version

Theorem wunrn 10766
Description: A weak universe is closed under the range operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunrn (𝜑 → ran 𝐴𝑈)

Proof of Theorem wunrn
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . 4 (𝜑𝐴𝑈)
31, 2wununi 10743 . . 3 (𝜑 𝐴𝑈)
41, 3wununi 10743 . 2 (𝜑 𝐴𝑈)
5 ssun2 4188 . . . 4 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 dmrnssfld 5986 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
75, 6sstri 4004 . . 3 ran 𝐴 𝐴
87a1i 11 . 2 (𝜑 → ran 𝐴 𝐴)
91, 4, 8wunss 10749 1 (𝜑 → ran 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cun 3960  wss 3962   cuni 4911  dom cdm 5688  ran crn 5689  WUnicwun 10737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-tr 5265  df-cnv 5696  df-dm 5698  df-rn 5699  df-wun 10739
This theorem is referenced by:  wuncnv  10767  wunfv  10769  wunco  10770  wuntpos  10771  wunstr  17221  wunfunc  17951  wunfuncOLD  17952  wunnat  18010  wunnatOLD  18011  catcoppccl  18170  catcoppcclOLD  18171  catcfuccl  18172  catcfucclOLD  18173  catcxpccl  18262  catcxpcclOLD  18263
  Copyright terms: Public domain W3C validator