| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmsxpsmopn | Structured version Visualization version GIF version | ||
| Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tmsxps.p | ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) |
| tmsxps.1 | ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
| tmsxps.2 | ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
| tmsxpsmopn.j | ⊢ 𝐽 = (MetOpen‘𝑀) |
| tmsxpsmopn.k | ⊢ 𝐾 = (MetOpen‘𝑁) |
| tmsxpsmopn.l | ⊢ 𝐿 = (MetOpen‘𝑃) |
| Ref | Expression |
|---|---|
| tmsxpsmopn | ⊢ (𝜑 → 𝐿 = (𝐽 ×t 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsxps.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) | |
| 2 | eqid 2735 | . . . . . 6 ⊢ (toMetSp‘𝑀) = (toMetSp‘𝑀) | |
| 3 | 2 | tmsxms 24425 | . . . . 5 ⊢ (𝑀 ∈ (∞Met‘𝑋) → (toMetSp‘𝑀) ∈ ∞MetSp) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (toMetSp‘𝑀) ∈ ∞MetSp) |
| 5 | xmstps 24392 | . . . 4 ⊢ ((toMetSp‘𝑀) ∈ ∞MetSp → (toMetSp‘𝑀) ∈ TopSp) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (toMetSp‘𝑀) ∈ TopSp) |
| 7 | tmsxps.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) | |
| 8 | eqid 2735 | . . . . . 6 ⊢ (toMetSp‘𝑁) = (toMetSp‘𝑁) | |
| 9 | 8 | tmsxms 24425 | . . . . 5 ⊢ (𝑁 ∈ (∞Met‘𝑌) → (toMetSp‘𝑁) ∈ ∞MetSp) |
| 10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (toMetSp‘𝑁) ∈ ∞MetSp) |
| 11 | xmstps 24392 | . . . 4 ⊢ ((toMetSp‘𝑁) ∈ ∞MetSp → (toMetSp‘𝑁) ∈ TopSp) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → (toMetSp‘𝑁) ∈ TopSp) |
| 13 | eqid 2735 | . . . 4 ⊢ ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) = ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) | |
| 14 | eqid 2735 | . . . 4 ⊢ (TopOpen‘(toMetSp‘𝑀)) = (TopOpen‘(toMetSp‘𝑀)) | |
| 15 | eqid 2735 | . . . 4 ⊢ (TopOpen‘(toMetSp‘𝑁)) = (TopOpen‘(toMetSp‘𝑁)) | |
| 16 | eqid 2735 | . . . 4 ⊢ (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) | |
| 17 | 13, 14, 15, 16 | xpstopn 23750 | . . 3 ⊢ (((toMetSp‘𝑀) ∈ TopSp ∧ (toMetSp‘𝑁) ∈ TopSp) → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = ((TopOpen‘(toMetSp‘𝑀)) ×t (TopOpen‘(toMetSp‘𝑁)))) |
| 18 | 6, 12, 17 | syl2anc 584 | . 2 ⊢ (𝜑 → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = ((TopOpen‘(toMetSp‘𝑀)) ×t (TopOpen‘(toMetSp‘𝑁)))) |
| 19 | tmsxpsmopn.l | . . 3 ⊢ 𝐿 = (MetOpen‘𝑃) | |
| 20 | 13 | xpsxms 24473 | . . . . . 6 ⊢ (((toMetSp‘𝑀) ∈ ∞MetSp ∧ (toMetSp‘𝑁) ∈ ∞MetSp) → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp) |
| 21 | 4, 10, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp) |
| 22 | eqid 2735 | . . . . . 6 ⊢ (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) | |
| 23 | tmsxps.p | . . . . . . 7 ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) | |
| 24 | 23 | reseq1i 5962 | . . . . . 6 ⊢ (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = ((dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) |
| 25 | 16, 22, 24 | xmstopn 24390 | . . . . 5 ⊢ (((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (MetOpen‘(𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))))) |
| 26 | 21, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (MetOpen‘(𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))))) |
| 27 | eqid 2735 | . . . . . . 7 ⊢ (Base‘(toMetSp‘𝑀)) = (Base‘(toMetSp‘𝑀)) | |
| 28 | eqid 2735 | . . . . . . 7 ⊢ (Base‘(toMetSp‘𝑁)) = (Base‘(toMetSp‘𝑁)) | |
| 29 | 13, 27, 28, 4, 10, 23 | xpsdsfn2 24317 | . . . . . 6 ⊢ (𝜑 → 𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) |
| 30 | fnresdm 6657 | . . . . . 6 ⊢ (𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃) | |
| 31 | 29, 30 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃) |
| 32 | 31 | fveq2d 6880 | . . . 4 ⊢ (𝜑 → (MetOpen‘(𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))) = (MetOpen‘𝑃)) |
| 33 | 26, 32 | eqtr2d 2771 | . . 3 ⊢ (𝜑 → (MetOpen‘𝑃) = (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) |
| 34 | 19, 33 | eqtrid 2782 | . 2 ⊢ (𝜑 → 𝐿 = (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) |
| 35 | tmsxpsmopn.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝑀) | |
| 36 | 2, 35 | tmstopn 24424 | . . . 4 ⊢ (𝑀 ∈ (∞Met‘𝑋) → 𝐽 = (TopOpen‘(toMetSp‘𝑀))) |
| 37 | 1, 36 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 = (TopOpen‘(toMetSp‘𝑀))) |
| 38 | tmsxpsmopn.k | . . . . 5 ⊢ 𝐾 = (MetOpen‘𝑁) | |
| 39 | 8, 38 | tmstopn 24424 | . . . 4 ⊢ (𝑁 ∈ (∞Met‘𝑌) → 𝐾 = (TopOpen‘(toMetSp‘𝑁))) |
| 40 | 7, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝐾 = (TopOpen‘(toMetSp‘𝑁))) |
| 41 | 37, 40 | oveq12d 7423 | . 2 ⊢ (𝜑 → (𝐽 ×t 𝐾) = ((TopOpen‘(toMetSp‘𝑀)) ×t (TopOpen‘(toMetSp‘𝑁)))) |
| 42 | 18, 34, 41 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → 𝐿 = (𝐽 ×t 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 × cxp 5652 ↾ cres 5656 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 distcds 17280 TopOpenctopn 17435 ×s cxps 17520 ∞Metcxmet 21300 MetOpencmopn 21305 TopSpctps 22870 ×t ctx 23498 ∞MetSpcxms 24256 toMetSpctms 24258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cn 23165 df-cnp 23166 df-tx 23500 df-hmeo 23693 df-xms 24259 df-tms 24261 |
| This theorem is referenced by: txmetcnp 24486 |
| Copyright terms: Public domain | W3C validator |