Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tmsxpsmopn | Structured version Visualization version GIF version |
Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tmsxps.p | ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) |
tmsxps.1 | ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
tmsxps.2 | ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
tmsxpsmopn.j | ⊢ 𝐽 = (MetOpen‘𝑀) |
tmsxpsmopn.k | ⊢ 𝐾 = (MetOpen‘𝑁) |
tmsxpsmopn.l | ⊢ 𝐿 = (MetOpen‘𝑃) |
Ref | Expression |
---|---|
tmsxpsmopn | ⊢ (𝜑 → 𝐿 = (𝐽 ×t 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmsxps.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) | |
2 | eqid 2738 | . . . . . 6 ⊢ (toMetSp‘𝑀) = (toMetSp‘𝑀) | |
3 | 2 | tmsxms 23548 | . . . . 5 ⊢ (𝑀 ∈ (∞Met‘𝑋) → (toMetSp‘𝑀) ∈ ∞MetSp) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (toMetSp‘𝑀) ∈ ∞MetSp) |
5 | xmstps 23514 | . . . 4 ⊢ ((toMetSp‘𝑀) ∈ ∞MetSp → (toMetSp‘𝑀) ∈ TopSp) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (toMetSp‘𝑀) ∈ TopSp) |
7 | tmsxps.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) | |
8 | eqid 2738 | . . . . . 6 ⊢ (toMetSp‘𝑁) = (toMetSp‘𝑁) | |
9 | 8 | tmsxms 23548 | . . . . 5 ⊢ (𝑁 ∈ (∞Met‘𝑌) → (toMetSp‘𝑁) ∈ ∞MetSp) |
10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (toMetSp‘𝑁) ∈ ∞MetSp) |
11 | xmstps 23514 | . . . 4 ⊢ ((toMetSp‘𝑁) ∈ ∞MetSp → (toMetSp‘𝑁) ∈ TopSp) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → (toMetSp‘𝑁) ∈ TopSp) |
13 | eqid 2738 | . . . 4 ⊢ ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) = ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) | |
14 | eqid 2738 | . . . 4 ⊢ (TopOpen‘(toMetSp‘𝑀)) = (TopOpen‘(toMetSp‘𝑀)) | |
15 | eqid 2738 | . . . 4 ⊢ (TopOpen‘(toMetSp‘𝑁)) = (TopOpen‘(toMetSp‘𝑁)) | |
16 | eqid 2738 | . . . 4 ⊢ (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) | |
17 | 13, 14, 15, 16 | xpstopn 22871 | . . 3 ⊢ (((toMetSp‘𝑀) ∈ TopSp ∧ (toMetSp‘𝑁) ∈ TopSp) → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = ((TopOpen‘(toMetSp‘𝑀)) ×t (TopOpen‘(toMetSp‘𝑁)))) |
18 | 6, 12, 17 | syl2anc 583 | . 2 ⊢ (𝜑 → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = ((TopOpen‘(toMetSp‘𝑀)) ×t (TopOpen‘(toMetSp‘𝑁)))) |
19 | tmsxpsmopn.l | . . 3 ⊢ 𝐿 = (MetOpen‘𝑃) | |
20 | 13 | xpsxms 23596 | . . . . . 6 ⊢ (((toMetSp‘𝑀) ∈ ∞MetSp ∧ (toMetSp‘𝑁) ∈ ∞MetSp) → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp) |
21 | 4, 10, 20 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp) |
22 | eqid 2738 | . . . . . 6 ⊢ (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) | |
23 | tmsxps.p | . . . . . . 7 ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) | |
24 | 23 | reseq1i 5876 | . . . . . 6 ⊢ (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = ((dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) |
25 | 16, 22, 24 | xmstopn 23512 | . . . . 5 ⊢ (((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (MetOpen‘(𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))))) |
26 | 21, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (MetOpen‘(𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))))) |
27 | eqid 2738 | . . . . . . 7 ⊢ (Base‘(toMetSp‘𝑀)) = (Base‘(toMetSp‘𝑀)) | |
28 | eqid 2738 | . . . . . . 7 ⊢ (Base‘(toMetSp‘𝑁)) = (Base‘(toMetSp‘𝑁)) | |
29 | 13, 27, 28, 4, 10, 23 | xpsdsfn2 23439 | . . . . . 6 ⊢ (𝜑 → 𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) |
30 | fnresdm 6535 | . . . . . 6 ⊢ (𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃) | |
31 | 29, 30 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃) |
32 | 31 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (MetOpen‘(𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))) = (MetOpen‘𝑃)) |
33 | 26, 32 | eqtr2d 2779 | . . 3 ⊢ (𝜑 → (MetOpen‘𝑃) = (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) |
34 | 19, 33 | eqtrid 2790 | . 2 ⊢ (𝜑 → 𝐿 = (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) |
35 | tmsxpsmopn.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝑀) | |
36 | 2, 35 | tmstopn 23547 | . . . 4 ⊢ (𝑀 ∈ (∞Met‘𝑋) → 𝐽 = (TopOpen‘(toMetSp‘𝑀))) |
37 | 1, 36 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 = (TopOpen‘(toMetSp‘𝑀))) |
38 | tmsxpsmopn.k | . . . . 5 ⊢ 𝐾 = (MetOpen‘𝑁) | |
39 | 8, 38 | tmstopn 23547 | . . . 4 ⊢ (𝑁 ∈ (∞Met‘𝑌) → 𝐾 = (TopOpen‘(toMetSp‘𝑁))) |
40 | 7, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝐾 = (TopOpen‘(toMetSp‘𝑁))) |
41 | 37, 40 | oveq12d 7273 | . 2 ⊢ (𝜑 → (𝐽 ×t 𝐾) = ((TopOpen‘(toMetSp‘𝑀)) ×t (TopOpen‘(toMetSp‘𝑁)))) |
42 | 18, 34, 41 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → 𝐿 = (𝐽 ×t 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 × cxp 5578 ↾ cres 5582 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TopOpenctopn 17049 ×s cxps 17134 ∞Metcxmet 20495 MetOpencmopn 20500 TopSpctps 21989 ×t ctx 22619 ∞MetSpcxms 23378 toMetSpctms 23380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-cnp 22287 df-tx 22621 df-hmeo 22814 df-xms 23381 df-tms 23383 |
This theorem is referenced by: txmetcnp 23609 |
Copyright terms: Public domain | W3C validator |