MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxpsmopn Structured version   Visualization version   GIF version

Theorem tmsxpsmopn 24037
Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsxps.p 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
tmsxps.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
tmsxps.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
tmsxpsmopn.j 𝐽 = (MetOpen‘𝑀)
tmsxpsmopn.k 𝐾 = (MetOpen‘𝑁)
tmsxpsmopn.l 𝐿 = (MetOpen‘𝑃)
Assertion
Ref Expression
tmsxpsmopn (𝜑𝐿 = (𝐽 ×t 𝐾))

Proof of Theorem tmsxpsmopn
StepHypRef Expression
1 tmsxps.1 . . . . 5 (𝜑𝑀 ∈ (∞Met‘𝑋))
2 eqid 2732 . . . . . 6 (toMetSp‘𝑀) = (toMetSp‘𝑀)
32tmsxms 23986 . . . . 5 (𝑀 ∈ (∞Met‘𝑋) → (toMetSp‘𝑀) ∈ ∞MetSp)
41, 3syl 17 . . . 4 (𝜑 → (toMetSp‘𝑀) ∈ ∞MetSp)
5 xmstps 23950 . . . 4 ((toMetSp‘𝑀) ∈ ∞MetSp → (toMetSp‘𝑀) ∈ TopSp)
64, 5syl 17 . . 3 (𝜑 → (toMetSp‘𝑀) ∈ TopSp)
7 tmsxps.2 . . . . 5 (𝜑𝑁 ∈ (∞Met‘𝑌))
8 eqid 2732 . . . . . 6 (toMetSp‘𝑁) = (toMetSp‘𝑁)
98tmsxms 23986 . . . . 5 (𝑁 ∈ (∞Met‘𝑌) → (toMetSp‘𝑁) ∈ ∞MetSp)
107, 9syl 17 . . . 4 (𝜑 → (toMetSp‘𝑁) ∈ ∞MetSp)
11 xmstps 23950 . . . 4 ((toMetSp‘𝑁) ∈ ∞MetSp → (toMetSp‘𝑁) ∈ TopSp)
1210, 11syl 17 . . 3 (𝜑 → (toMetSp‘𝑁) ∈ TopSp)
13 eqid 2732 . . . 4 ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) = ((toMetSp‘𝑀) ×s (toMetSp‘𝑁))
14 eqid 2732 . . . 4 (TopOpen‘(toMetSp‘𝑀)) = (TopOpen‘(toMetSp‘𝑀))
15 eqid 2732 . . . 4 (TopOpen‘(toMetSp‘𝑁)) = (TopOpen‘(toMetSp‘𝑁))
16 eqid 2732 . . . 4 (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
1713, 14, 15, 16xpstopn 23307 . . 3 (((toMetSp‘𝑀) ∈ TopSp ∧ (toMetSp‘𝑁) ∈ TopSp) → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = ((TopOpen‘(toMetSp‘𝑀)) ×t (TopOpen‘(toMetSp‘𝑁))))
186, 12, 17syl2anc 584 . 2 (𝜑 → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = ((TopOpen‘(toMetSp‘𝑀)) ×t (TopOpen‘(toMetSp‘𝑁))))
19 tmsxpsmopn.l . . 3 𝐿 = (MetOpen‘𝑃)
2013xpsxms 24034 . . . . . 6 (((toMetSp‘𝑀) ∈ ∞MetSp ∧ (toMetSp‘𝑁) ∈ ∞MetSp) → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp)
214, 10, 20syl2anc 584 . . . . 5 (𝜑 → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp)
22 eqid 2732 . . . . . 6 (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
23 tmsxps.p . . . . . . 7 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
2423reseq1i 5975 . . . . . 6 (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = ((dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
2516, 22, 24xmstopn 23948 . . . . 5 (((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (MetOpen‘(𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))))
2621, 25syl 17 . . . 4 (𝜑 → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (MetOpen‘(𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))))
27 eqid 2732 . . . . . . 7 (Base‘(toMetSp‘𝑀)) = (Base‘(toMetSp‘𝑀))
28 eqid 2732 . . . . . . 7 (Base‘(toMetSp‘𝑁)) = (Base‘(toMetSp‘𝑁))
2913, 27, 28, 4, 10, 23xpsdsfn2 23875 . . . . . 6 (𝜑𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
30 fnresdm 6666 . . . . . 6 (𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃)
3129, 30syl 17 . . . . 5 (𝜑 → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃)
3231fveq2d 6892 . . . 4 (𝜑 → (MetOpen‘(𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))) = (MetOpen‘𝑃))
3326, 32eqtr2d 2773 . . 3 (𝜑 → (MetOpen‘𝑃) = (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))
3419, 33eqtrid 2784 . 2 (𝜑𝐿 = (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))
35 tmsxpsmopn.j . . . . 5 𝐽 = (MetOpen‘𝑀)
362, 35tmstopn 23985 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 = (TopOpen‘(toMetSp‘𝑀)))
371, 36syl 17 . . 3 (𝜑𝐽 = (TopOpen‘(toMetSp‘𝑀)))
38 tmsxpsmopn.k . . . . 5 𝐾 = (MetOpen‘𝑁)
398, 38tmstopn 23985 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 = (TopOpen‘(toMetSp‘𝑁)))
407, 39syl 17 . . 3 (𝜑𝐾 = (TopOpen‘(toMetSp‘𝑁)))
4137, 40oveq12d 7423 . 2 (𝜑 → (𝐽 ×t 𝐾) = ((TopOpen‘(toMetSp‘𝑀)) ×t (TopOpen‘(toMetSp‘𝑁))))
4218, 34, 413eqtr4d 2782 1 (𝜑𝐿 = (𝐽 ×t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106   × cxp 5673  cres 5677   Fn wfn 6535  cfv 6540  (class class class)co 7405  Basecbs 17140  distcds 17202  TopOpenctopn 17363   ×s cxps 17448  ∞Metcxmet 20921  MetOpencmopn 20926  TopSpctps 22425   ×t ctx 23055  ∞MetSpcxms 23814  toMetSpctms 23816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-psmet 20928  df-xmet 20929  df-bl 20931  df-mopn 20932  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cn 22722  df-cnp 22723  df-tx 23057  df-hmeo 23250  df-xms 23817  df-tms 23819
This theorem is referenced by:  txmetcnp  24047
  Copyright terms: Public domain W3C validator