MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxpsmopn Structured version   Visualization version   GIF version

Theorem tmsxpsmopn 24453
Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsxps.p 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
tmsxps.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
tmsxps.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
tmsxpsmopn.j 𝐽 = (MetOpen‘𝑀)
tmsxpsmopn.k 𝐾 = (MetOpen‘𝑁)
tmsxpsmopn.l 𝐿 = (MetOpen‘𝑃)
Assertion
Ref Expression
tmsxpsmopn (𝜑𝐿 = (𝐽 ×t 𝐾))

Proof of Theorem tmsxpsmopn
StepHypRef Expression
1 tmsxps.1 . . . . 5 (𝜑𝑀 ∈ (∞Met‘𝑋))
2 eqid 2731 . . . . . 6 (toMetSp‘𝑀) = (toMetSp‘𝑀)
32tmsxms 24402 . . . . 5 (𝑀 ∈ (∞Met‘𝑋) → (toMetSp‘𝑀) ∈ ∞MetSp)
41, 3syl 17 . . . 4 (𝜑 → (toMetSp‘𝑀) ∈ ∞MetSp)
5 xmstps 24369 . . . 4 ((toMetSp‘𝑀) ∈ ∞MetSp → (toMetSp‘𝑀) ∈ TopSp)
64, 5syl 17 . . 3 (𝜑 → (toMetSp‘𝑀) ∈ TopSp)
7 tmsxps.2 . . . . 5 (𝜑𝑁 ∈ (∞Met‘𝑌))
8 eqid 2731 . . . . . 6 (toMetSp‘𝑁) = (toMetSp‘𝑁)
98tmsxms 24402 . . . . 5 (𝑁 ∈ (∞Met‘𝑌) → (toMetSp‘𝑁) ∈ ∞MetSp)
107, 9syl 17 . . . 4 (𝜑 → (toMetSp‘𝑁) ∈ ∞MetSp)
11 xmstps 24369 . . . 4 ((toMetSp‘𝑁) ∈ ∞MetSp → (toMetSp‘𝑁) ∈ TopSp)
1210, 11syl 17 . . 3 (𝜑 → (toMetSp‘𝑁) ∈ TopSp)
13 eqid 2731 . . . 4 ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) = ((toMetSp‘𝑀) ×s (toMetSp‘𝑁))
14 eqid 2731 . . . 4 (TopOpen‘(toMetSp‘𝑀)) = (TopOpen‘(toMetSp‘𝑀))
15 eqid 2731 . . . 4 (TopOpen‘(toMetSp‘𝑁)) = (TopOpen‘(toMetSp‘𝑁))
16 eqid 2731 . . . 4 (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
1713, 14, 15, 16xpstopn 23728 . . 3 (((toMetSp‘𝑀) ∈ TopSp ∧ (toMetSp‘𝑁) ∈ TopSp) → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = ((TopOpen‘(toMetSp‘𝑀)) ×t (TopOpen‘(toMetSp‘𝑁))))
186, 12, 17syl2anc 584 . 2 (𝜑 → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = ((TopOpen‘(toMetSp‘𝑀)) ×t (TopOpen‘(toMetSp‘𝑁))))
19 tmsxpsmopn.l . . 3 𝐿 = (MetOpen‘𝑃)
2013xpsxms 24450 . . . . . 6 (((toMetSp‘𝑀) ∈ ∞MetSp ∧ (toMetSp‘𝑁) ∈ ∞MetSp) → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp)
214, 10, 20syl2anc 584 . . . . 5 (𝜑 → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp)
22 eqid 2731 . . . . . 6 (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
23 tmsxps.p . . . . . . 7 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
2423reseq1i 5924 . . . . . 6 (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = ((dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
2516, 22, 24xmstopn 24367 . . . . 5 (((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (MetOpen‘(𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))))
2621, 25syl 17 . . . 4 (𝜑 → (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (MetOpen‘(𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))))
27 eqid 2731 . . . . . . 7 (Base‘(toMetSp‘𝑀)) = (Base‘(toMetSp‘𝑀))
28 eqid 2731 . . . . . . 7 (Base‘(toMetSp‘𝑁)) = (Base‘(toMetSp‘𝑁))
2913, 27, 28, 4, 10, 23xpsdsfn2 24294 . . . . . 6 (𝜑𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
30 fnresdm 6600 . . . . . 6 (𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃)
3129, 30syl 17 . . . . 5 (𝜑 → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃)
3231fveq2d 6826 . . . 4 (𝜑 → (MetOpen‘(𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))) = (MetOpen‘𝑃))
3326, 32eqtr2d 2767 . . 3 (𝜑 → (MetOpen‘𝑃) = (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))
3419, 33eqtrid 2778 . 2 (𝜑𝐿 = (TopOpen‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))
35 tmsxpsmopn.j . . . . 5 𝐽 = (MetOpen‘𝑀)
362, 35tmstopn 24401 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 = (TopOpen‘(toMetSp‘𝑀)))
371, 36syl 17 . . 3 (𝜑𝐽 = (TopOpen‘(toMetSp‘𝑀)))
38 tmsxpsmopn.k . . . . 5 𝐾 = (MetOpen‘𝑁)
398, 38tmstopn 24401 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 = (TopOpen‘(toMetSp‘𝑁)))
407, 39syl 17 . . 3 (𝜑𝐾 = (TopOpen‘(toMetSp‘𝑁)))
4137, 40oveq12d 7364 . 2 (𝜑 → (𝐽 ×t 𝐾) = ((TopOpen‘(toMetSp‘𝑀)) ×t (TopOpen‘(toMetSp‘𝑁))))
4218, 34, 413eqtr4d 2776 1 (𝜑𝐿 = (𝐽 ×t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   × cxp 5614  cres 5618   Fn wfn 6476  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  TopOpenctopn 17325   ×s cxps 17410  ∞Metcxmet 21277  MetOpencmopn 21282  TopSpctps 22848   ×t ctx 23476  ∞MetSpcxms 24233  toMetSpctms 24235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-bl 21287  df-mopn 21288  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cn 23143  df-cnp 23144  df-tx 23478  df-hmeo 23671  df-xms 24236  df-tms 24238
This theorem is referenced by:  txmetcnp  24463
  Copyright terms: Public domain W3C validator