MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressxms Structured version   Visualization version   GIF version

Theorem ressxms 23130
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ressxms ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ ∞MetSp)

Proof of Theorem ressxms
StepHypRef Expression
1 eqid 2820 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2820 . . . . . 6 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
31, 2xmsxmet 23061 . . . . 5 (𝐾 ∈ ∞MetSp → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))
43adantr 483 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))
5 xmetres 22969 . . . 4 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘((Base‘𝐾) ∩ 𝐴)))
64, 5syl 17 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘((Base‘𝐾) ∩ 𝐴)))
7 resres 5859 . . . . 5 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)))
8 inxp 5696 . . . . . 6 (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)) = (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))
98reseq2i 5843 . . . . 5 ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
107, 9eqtri 2843 . . . 4 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
11 eqid 2820 . . . . . . 7 (𝐾s 𝐴) = (𝐾s 𝐴)
12 eqid 2820 . . . . . . 7 (dist‘𝐾) = (dist‘𝐾)
1311, 12ressds 16681 . . . . . 6 (𝐴𝑉 → (dist‘𝐾) = (dist‘(𝐾s 𝐴)))
1413adantl 484 . . . . 5 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (dist‘𝐾) = (dist‘(𝐾s 𝐴)))
15 incom 4171 . . . . . . 7 ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾))
1611, 1ressbas 16549 . . . . . . . 8 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
1716adantl 484 . . . . . . 7 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
1815, 17syl5eq 2867 . . . . . 6 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((Base‘𝐾) ∩ 𝐴) = (Base‘(𝐾s 𝐴)))
1918sqxpeqd 5580 . . . . 5 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) = ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
2014, 19reseq12d 5847 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2110, 20syl5eq 2867 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2218fveq2d 6667 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (∞Met‘((Base‘𝐾) ∩ 𝐴)) = (∞Met‘(Base‘(𝐾s 𝐴))))
236, 21, 223eltr3d 2926 . 2 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) ∈ (∞Met‘(Base‘(𝐾s 𝐴))))
24 eqid 2820 . . . . . . 7 (TopOpen‘𝐾) = (TopOpen‘𝐾)
2524, 1, 2xmstopn 23056 . . . . . 6 (𝐾 ∈ ∞MetSp → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
2625adantr 483 . . . . 5 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
2726oveq1d 7164 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↾t ((Base‘𝐾) ∩ 𝐴)))
28 inss1 4198 . . . . 5 ((Base‘𝐾) ∩ 𝐴) ⊆ (Base‘𝐾)
29 xpss12 5563 . . . . . . . . 9 ((((Base‘𝐾) ∩ 𝐴) ⊆ (Base‘𝐾) ∧ ((Base‘𝐾) ∩ 𝐴) ⊆ (Base‘𝐾)) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) ⊆ ((Base‘𝐾) × (Base‘𝐾)))
3028, 28, 29mp2an 690 . . . . . . . 8 (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) ⊆ ((Base‘𝐾) × (Base‘𝐾))
31 resabs1 5876 . . . . . . . 8 ((((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) ⊆ ((Base‘𝐾) × (Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))))
3230, 31ax-mp 5 . . . . . . 7 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
3310, 32eqtr4i 2846 . . . . . 6 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
34 eqid 2820 . . . . . 6 (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
35 eqid 2820 . . . . . 6 (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))) = (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)))
3633, 34, 35metrest 23129 . . . . 5 ((((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) ∧ ((Base‘𝐾) ∩ 𝐴) ⊆ (Base‘𝐾)) → ((MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↾t ((Base‘𝐾) ∩ 𝐴)) = (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))))
374, 28, 36sylancl 588 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↾t ((Base‘𝐾) ∩ 𝐴)) = (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))))
3827, 37eqtrd 2855 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))))
39 xmstps 23058 . . . . . . . . 9 (𝐾 ∈ ∞MetSp → 𝐾 ∈ TopSp)
401, 24tpsuni 21539 . . . . . . . . 9 (𝐾 ∈ TopSp → (Base‘𝐾) = (TopOpen‘𝐾))
4139, 40syl 17 . . . . . . . 8 (𝐾 ∈ ∞MetSp → (Base‘𝐾) = (TopOpen‘𝐾))
4241adantr 483 . . . . . . 7 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (Base‘𝐾) = (TopOpen‘𝐾))
4342ineq2d 4182 . . . . . 6 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐴 ∩ (Base‘𝐾)) = (𝐴 (TopOpen‘𝐾)))
4415, 43syl5eq 2867 . . . . 5 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((Base‘𝐾) ∩ 𝐴) = (𝐴 (TopOpen‘𝐾)))
4544oveq2d 7165 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopOpen‘𝐾) ↾t (𝐴 (TopOpen‘𝐾))))
461, 24istps 21537 . . . . . 6 (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
4739, 46sylib 220 . . . . 5 (𝐾 ∈ ∞MetSp → (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
48 eqid 2820 . . . . . 6 (TopOpen‘𝐾) = (TopOpen‘𝐾)
4948restin 21769 . . . . 5 (((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) = ((TopOpen‘𝐾) ↾t (𝐴 (TopOpen‘𝐾))))
5047, 49sylan 582 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) = ((TopOpen‘𝐾) ↾t (𝐴 (TopOpen‘𝐾))))
5145, 50eqtr4d 2858 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopOpen‘𝐾) ↾t 𝐴))
5221fveq2d 6667 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))) = (MetOpen‘((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
5338, 51, 523eqtr3d 2863 . 2 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) = (MetOpen‘((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
5411, 24resstopn 21789 . . 3 ((TopOpen‘𝐾) ↾t 𝐴) = (TopOpen‘(𝐾s 𝐴))
55 eqid 2820 . . 3 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
56 eqid 2820 . . 3 ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
5754, 55, 56isxms2 23053 . 2 ((𝐾s 𝐴) ∈ ∞MetSp ↔ (((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) ∈ (∞Met‘(Base‘(𝐾s 𝐴))) ∧ ((TopOpen‘𝐾) ↾t 𝐴) = (MetOpen‘((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))))
5823, 53, 57sylanbrc 585 1 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  cin 3928  wss 3929   cuni 4831   × cxp 5546  cres 5550  cfv 6348  (class class class)co 7149  Basecbs 16478  s cress 16479  distcds 16569  t crest 16689  TopOpenctopn 16690  ∞Metcxmet 20525  MetOpencmopn 20530  TopOnctopon 21513  TopSpctps 21535  ∞MetSpcxms 22922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-sup 8899  df-inf 8900  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-tset 16579  df-ds 16582  df-rest 16691  df-topn 16692  df-topgen 16712  df-psmet 20532  df-xmet 20533  df-bl 20535  df-mopn 20536  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-xms 22925
This theorem is referenced by:  ressms  23131  qqhcn  31253  qqhucn  31254
  Copyright terms: Public domain W3C validator