MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressxms Structured version   Visualization version   GIF version

Theorem ressxms 24440
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ressxms ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ ∞MetSp)

Proof of Theorem ressxms
StepHypRef Expression
1 eqid 2731 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2731 . . . . . 6 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
31, 2xmsxmet 24371 . . . . 5 (𝐾 ∈ ∞MetSp → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))
43adantr 480 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))
5 xmetres 24279 . . . 4 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘((Base‘𝐾) ∩ 𝐴)))
64, 5syl 17 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘((Base‘𝐾) ∩ 𝐴)))
7 resres 5940 . . . . 5 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)))
8 inxp 5770 . . . . . 6 (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)) = (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))
98reseq2i 5924 . . . . 5 ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
107, 9eqtri 2754 . . . 4 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
11 eqid 2731 . . . . . . 7 (𝐾s 𝐴) = (𝐾s 𝐴)
12 eqid 2731 . . . . . . 7 (dist‘𝐾) = (dist‘𝐾)
1311, 12ressds 17314 . . . . . 6 (𝐴𝑉 → (dist‘𝐾) = (dist‘(𝐾s 𝐴)))
1413adantl 481 . . . . 5 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (dist‘𝐾) = (dist‘(𝐾s 𝐴)))
15 incom 4156 . . . . . . 7 ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾))
1611, 1ressbas 17147 . . . . . . . 8 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
1716adantl 481 . . . . . . 7 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
1815, 17eqtrid 2778 . . . . . 6 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((Base‘𝐾) ∩ 𝐴) = (Base‘(𝐾s 𝐴)))
1918sqxpeqd 5646 . . . . 5 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) = ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
2014, 19reseq12d 5928 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2110, 20eqtrid 2778 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2218fveq2d 6826 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (∞Met‘((Base‘𝐾) ∩ 𝐴)) = (∞Met‘(Base‘(𝐾s 𝐴))))
236, 21, 223eltr3d 2845 . 2 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) ∈ (∞Met‘(Base‘(𝐾s 𝐴))))
24 eqid 2731 . . . . . . 7 (TopOpen‘𝐾) = (TopOpen‘𝐾)
2524, 1, 2xmstopn 24366 . . . . . 6 (𝐾 ∈ ∞MetSp → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
2625adantr 480 . . . . 5 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
2726oveq1d 7361 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↾t ((Base‘𝐾) ∩ 𝐴)))
28 inss1 4184 . . . . 5 ((Base‘𝐾) ∩ 𝐴) ⊆ (Base‘𝐾)
29 xpss12 5629 . . . . . . . . 9 ((((Base‘𝐾) ∩ 𝐴) ⊆ (Base‘𝐾) ∧ ((Base‘𝐾) ∩ 𝐴) ⊆ (Base‘𝐾)) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) ⊆ ((Base‘𝐾) × (Base‘𝐾)))
3028, 28, 29mp2an 692 . . . . . . . 8 (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) ⊆ ((Base‘𝐾) × (Base‘𝐾))
31 resabs1 5954 . . . . . . . 8 ((((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) ⊆ ((Base‘𝐾) × (Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))))
3230, 31ax-mp 5 . . . . . . 7 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
3310, 32eqtr4i 2757 . . . . . 6 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
34 eqid 2731 . . . . . 6 (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
35 eqid 2731 . . . . . 6 (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))) = (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)))
3633, 34, 35metrest 24439 . . . . 5 ((((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) ∧ ((Base‘𝐾) ∩ 𝐴) ⊆ (Base‘𝐾)) → ((MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↾t ((Base‘𝐾) ∩ 𝐴)) = (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))))
374, 28, 36sylancl 586 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↾t ((Base‘𝐾) ∩ 𝐴)) = (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))))
3827, 37eqtrd 2766 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))))
39 xmstps 24368 . . . . . . . . 9 (𝐾 ∈ ∞MetSp → 𝐾 ∈ TopSp)
401, 24tpsuni 22851 . . . . . . . . 9 (𝐾 ∈ TopSp → (Base‘𝐾) = (TopOpen‘𝐾))
4139, 40syl 17 . . . . . . . 8 (𝐾 ∈ ∞MetSp → (Base‘𝐾) = (TopOpen‘𝐾))
4241adantr 480 . . . . . . 7 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (Base‘𝐾) = (TopOpen‘𝐾))
4342ineq2d 4167 . . . . . 6 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐴 ∩ (Base‘𝐾)) = (𝐴 (TopOpen‘𝐾)))
4415, 43eqtrid 2778 . . . . 5 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((Base‘𝐾) ∩ 𝐴) = (𝐴 (TopOpen‘𝐾)))
4544oveq2d 7362 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopOpen‘𝐾) ↾t (𝐴 (TopOpen‘𝐾))))
461, 24istps 22849 . . . . . 6 (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
4739, 46sylib 218 . . . . 5 (𝐾 ∈ ∞MetSp → (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
48 eqid 2731 . . . . . 6 (TopOpen‘𝐾) = (TopOpen‘𝐾)
4948restin 23081 . . . . 5 (((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) = ((TopOpen‘𝐾) ↾t (𝐴 (TopOpen‘𝐾))))
5047, 49sylan 580 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) = ((TopOpen‘𝐾) ↾t (𝐴 (TopOpen‘𝐾))))
5145, 50eqtr4d 2769 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopOpen‘𝐾) ↾t 𝐴))
5221fveq2d 6826 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))) = (MetOpen‘((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
5338, 51, 523eqtr3d 2774 . 2 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) = (MetOpen‘((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
5411, 24resstopn 23101 . . 3 ((TopOpen‘𝐾) ↾t 𝐴) = (TopOpen‘(𝐾s 𝐴))
55 eqid 2731 . . 3 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
56 eqid 2731 . . 3 ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
5754, 55, 56isxms2 24363 . 2 ((𝐾s 𝐴) ∈ ∞MetSp ↔ (((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) ∈ (∞Met‘(Base‘(𝐾s 𝐴))) ∧ ((TopOpen‘𝐾) ↾t 𝐴) = (MetOpen‘((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))))
5823, 53, 57sylanbrc 583 1 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cin 3896  wss 3897   cuni 4856   × cxp 5612  cres 5616  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  distcds 17170  t crest 17324  TopOpenctopn 17325  ∞Metcxmet 21276  MetOpencmopn 21281  TopOnctopon 22825  TopSpctps 22847  ∞MetSpcxms 24232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-tset 17180  df-ds 17183  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-xms 24235
This theorem is referenced by:  ressms  24441  qqhcn  34004  qqhucn  34005
  Copyright terms: Public domain W3C validator