Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpcbas | Structured version Visualization version GIF version |
Description: Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.) |
Ref | Expression |
---|---|
xpcbas.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpcbas.x | ⊢ 𝑋 = (Base‘𝐶) |
xpcbas.y | ⊢ 𝑌 = (Base‘𝐷) |
Ref | Expression |
---|---|
xpcbas | ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcbas.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | xpcbas.x | . . . 4 ⊢ 𝑋 = (Base‘𝐶) | |
3 | xpcbas.y | . . . 4 ⊢ 𝑌 = (Base‘𝐷) | |
4 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
5 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
6 | eqid 2738 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
7 | eqid 2738 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
8 | simpl 482 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐶 ∈ V) | |
9 | simpr 484 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐷 ∈ V) | |
10 | eqidd 2739 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (𝑋 × 𝑌)) | |
11 | eqidd 2739 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣)))) = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))) | |
12 | eqidd 2739 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉)) = (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | xpcval 17810 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = {〈(Base‘ndx), (𝑋 × 𝑌)〉, 〈(Hom ‘ndx), (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))〉, 〈(comp‘ndx), (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) |
14 | 2 | fvexi 6770 | . . . . 5 ⊢ 𝑋 ∈ V |
15 | 3 | fvexi 6770 | . . . . 5 ⊢ 𝑌 ∈ V |
16 | 14, 15 | xpex 7581 | . . . 4 ⊢ (𝑋 × 𝑌) ∈ V |
17 | 16 | a1i 11 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) ∈ V) |
18 | 13, 17 | estrreslem1 17769 | . 2 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇)) |
19 | base0 16845 | . . 3 ⊢ ∅ = (Base‘∅) | |
20 | fvprc 6748 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
21 | 2, 20 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑋 = ∅) |
22 | fvprc 6748 | . . . . . 6 ⊢ (¬ 𝐷 ∈ V → (Base‘𝐷) = ∅) | |
23 | 3, 22 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝐷 ∈ V → 𝑌 = ∅) |
24 | 21, 23 | orim12i 905 | . . . 4 ⊢ ((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) → (𝑋 = ∅ ∨ 𝑌 = ∅)) |
25 | ianor 978 | . . . 4 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V)) | |
26 | xpeq0 6052 | . . . 4 ⊢ ((𝑋 × 𝑌) = ∅ ↔ (𝑋 = ∅ ∨ 𝑌 = ∅)) | |
27 | 24, 25, 26 | 3imtr4i 291 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = ∅) |
28 | fnxpc 17809 | . . . . . . 7 ⊢ ×c Fn (V × V) | |
29 | fndm 6520 | . . . . . . 7 ⊢ ( ×c Fn (V × V) → dom ×c = (V × V)) | |
30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ dom ×c = (V × V) |
31 | 30 | ndmov 7434 | . . . . 5 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ×c 𝐷) = ∅) |
32 | 1, 31 | eqtrid 2790 | . . . 4 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = ∅) |
33 | 32 | fveq2d 6760 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (Base‘𝑇) = (Base‘∅)) |
34 | 19, 27, 33 | 3eqtr4a 2805 | . 2 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇)) |
35 | 18, 34 | pm2.61i 182 | 1 ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 〈cop 4564 × cxp 5578 dom cdm 5580 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 2nd c2nd 7803 Basecbs 16840 Hom chom 16899 compcco 16900 ×c cxpc 17801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-slot 16811 df-ndx 16823 df-base 16841 df-hom 16912 df-cco 16913 df-xpc 17805 |
This theorem is referenced by: xpchomfval 17812 xpccofval 17815 xpchom2 17819 xpcco2 17820 xpccatid 17821 1stfval 17824 2ndfval 17827 1stfcl 17830 2ndfcl 17831 prfcl 17836 prf1st 17837 prf2nd 17838 1st2ndprf 17839 catcxpccl 17840 catcxpcclOLD 17841 xpcpropd 17842 evlfcl 17856 curf1cl 17862 curf2cl 17865 curfcl 17866 uncf1 17870 uncf2 17871 uncfcurf 17873 diag11 17877 diag12 17878 diag2 17879 curf2ndf 17881 hofcl 17893 yonedalem21 17907 yonedalem22 17912 yonedalem3b 17913 yonedalem3 17914 yonedainv 17915 yonffthlem 17916 |
Copyright terms: Public domain | W3C validator |