| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcbas | Structured version Visualization version GIF version | ||
| Description: Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.) |
| Ref | Expression |
|---|---|
| xpcbas.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| xpcbas.x | ⊢ 𝑋 = (Base‘𝐶) |
| xpcbas.y | ⊢ 𝑌 = (Base‘𝐷) |
| Ref | Expression |
|---|---|
| xpcbas | ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcbas.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 2 | xpcbas.x | . . . 4 ⊢ 𝑋 = (Base‘𝐶) | |
| 3 | xpcbas.y | . . . 4 ⊢ 𝑌 = (Base‘𝐷) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 5 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 6 | eqid 2731 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 7 | eqid 2731 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 8 | simpl 482 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐶 ∈ V) | |
| 9 | simpr 484 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐷 ∈ V) | |
| 10 | eqidd 2732 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (𝑋 × 𝑌)) | |
| 11 | eqidd 2732 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣)))) = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))) | |
| 12 | eqidd 2732 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉)) = (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | xpcval 18080 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = {〈(Base‘ndx), (𝑋 × 𝑌)〉, 〈(Hom ‘ndx), (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))〉, 〈(comp‘ndx), (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) |
| 14 | 2 | fvexi 6836 | . . . . 5 ⊢ 𝑋 ∈ V |
| 15 | 3 | fvexi 6836 | . . . . 5 ⊢ 𝑌 ∈ V |
| 16 | 14, 15 | xpex 7686 | . . . 4 ⊢ (𝑋 × 𝑌) ∈ V |
| 17 | 16 | a1i 11 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) ∈ V) |
| 18 | 13, 17 | estrreslem1 18040 | . 2 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇)) |
| 19 | base0 17122 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 20 | fvprc 6814 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
| 21 | 2, 20 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑋 = ∅) |
| 22 | fvprc 6814 | . . . . . 6 ⊢ (¬ 𝐷 ∈ V → (Base‘𝐷) = ∅) | |
| 23 | 3, 22 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝐷 ∈ V → 𝑌 = ∅) |
| 24 | 21, 23 | orim12i 908 | . . . 4 ⊢ ((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) → (𝑋 = ∅ ∨ 𝑌 = ∅)) |
| 25 | ianor 983 | . . . 4 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V)) | |
| 26 | xpeq0 6107 | . . . 4 ⊢ ((𝑋 × 𝑌) = ∅ ↔ (𝑋 = ∅ ∨ 𝑌 = ∅)) | |
| 27 | 24, 25, 26 | 3imtr4i 292 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = ∅) |
| 28 | fnxpc 18079 | . . . . . . 7 ⊢ ×c Fn (V × V) | |
| 29 | fndm 6584 | . . . . . . 7 ⊢ ( ×c Fn (V × V) → dom ×c = (V × V)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ dom ×c = (V × V) |
| 31 | 30 | ndmov 7530 | . . . . 5 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ×c 𝐷) = ∅) |
| 32 | 1, 31 | eqtrid 2778 | . . . 4 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = ∅) |
| 33 | 32 | fveq2d 6826 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (Base‘𝑇) = (Base‘∅)) |
| 34 | 19, 27, 33 | 3eqtr4a 2792 | . 2 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇)) |
| 35 | 18, 34 | pm2.61i 182 | 1 ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 〈cop 4582 × cxp 5614 dom cdm 5616 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 Basecbs 17117 Hom chom 17169 compcco 17170 ×c cxpc 18071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-slot 17090 df-ndx 17102 df-base 17118 df-hom 17182 df-cco 17183 df-xpc 18075 |
| This theorem is referenced by: xpchomfval 18082 xpccofval 18085 xpchom2 18089 xpcco2 18090 xpccatid 18091 1stfval 18094 2ndfval 18097 1stfcl 18100 2ndfcl 18101 prfcl 18106 prf1st 18107 prf2nd 18108 1st2ndprf 18109 catcxpccl 18110 xpcpropd 18111 evlfcl 18125 curf1cl 18131 curf2cl 18134 curfcl 18135 uncf1 18139 uncf2 18140 uncfcurf 18142 diag11 18146 diag12 18147 diag2 18148 curf2ndf 18150 hofcl 18162 yonedalem21 18176 yonedalem22 18181 yonedalem3b 18182 yonedalem3 18183 yonedainv 18184 yonffthlem 18185 elxpcbasex1ALT 49280 elxpcbasex2ALT 49282 xpcfucbas 49283 dfswapf2 49292 swapf1a 49300 swapf1 49303 swapf2val 49304 swapf1f1o 49306 swapf2f1oa 49308 swapfida 49311 oppc1stf 49319 oppc2ndf 49320 cofuswapf1 49325 cofuswapf2 49326 |
| Copyright terms: Public domain | W3C validator |