| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcbas | Structured version Visualization version GIF version | ||
| Description: Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.) |
| Ref | Expression |
|---|---|
| xpcbas.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| xpcbas.x | ⊢ 𝑋 = (Base‘𝐶) |
| xpcbas.y | ⊢ 𝑌 = (Base‘𝐷) |
| Ref | Expression |
|---|---|
| xpcbas | ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcbas.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 2 | xpcbas.x | . . . 4 ⊢ 𝑋 = (Base‘𝐶) | |
| 3 | xpcbas.y | . . . 4 ⊢ 𝑌 = (Base‘𝐷) | |
| 4 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 6 | eqid 2729 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 7 | eqid 2729 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 8 | simpl 482 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐶 ∈ V) | |
| 9 | simpr 484 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐷 ∈ V) | |
| 10 | eqidd 2730 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (𝑋 × 𝑌)) | |
| 11 | eqidd 2730 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣)))) = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))) | |
| 12 | eqidd 2730 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉)) = (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | xpcval 18101 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = {〈(Base‘ndx), (𝑋 × 𝑌)〉, 〈(Hom ‘ndx), (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))〉, 〈(comp‘ndx), (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) |
| 14 | 2 | fvexi 6840 | . . . . 5 ⊢ 𝑋 ∈ V |
| 15 | 3 | fvexi 6840 | . . . . 5 ⊢ 𝑌 ∈ V |
| 16 | 14, 15 | xpex 7693 | . . . 4 ⊢ (𝑋 × 𝑌) ∈ V |
| 17 | 16 | a1i 11 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) ∈ V) |
| 18 | 13, 17 | estrreslem1 18061 | . 2 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇)) |
| 19 | base0 17143 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 20 | fvprc 6818 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
| 21 | 2, 20 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑋 = ∅) |
| 22 | fvprc 6818 | . . . . . 6 ⊢ (¬ 𝐷 ∈ V → (Base‘𝐷) = ∅) | |
| 23 | 3, 22 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝐷 ∈ V → 𝑌 = ∅) |
| 24 | 21, 23 | orim12i 908 | . . . 4 ⊢ ((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) → (𝑋 = ∅ ∨ 𝑌 = ∅)) |
| 25 | ianor 983 | . . . 4 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V)) | |
| 26 | xpeq0 6113 | . . . 4 ⊢ ((𝑋 × 𝑌) = ∅ ↔ (𝑋 = ∅ ∨ 𝑌 = ∅)) | |
| 27 | 24, 25, 26 | 3imtr4i 292 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = ∅) |
| 28 | fnxpc 18100 | . . . . . . 7 ⊢ ×c Fn (V × V) | |
| 29 | fndm 6589 | . . . . . . 7 ⊢ ( ×c Fn (V × V) → dom ×c = (V × V)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ dom ×c = (V × V) |
| 31 | 30 | ndmov 7537 | . . . . 5 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ×c 𝐷) = ∅) |
| 32 | 1, 31 | eqtrid 2776 | . . . 4 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = ∅) |
| 33 | 32 | fveq2d 6830 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (Base‘𝑇) = (Base‘∅)) |
| 34 | 19, 27, 33 | 3eqtr4a 2790 | . 2 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇)) |
| 35 | 18, 34 | pm2.61i 182 | 1 ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 〈cop 4585 × cxp 5621 dom cdm 5623 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1st c1st 7929 2nd c2nd 7930 Basecbs 17138 Hom chom 17190 compcco 17191 ×c cxpc 18092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-slot 17111 df-ndx 17123 df-base 17139 df-hom 17203 df-cco 17204 df-xpc 18096 |
| This theorem is referenced by: xpchomfval 18103 xpccofval 18106 xpchom2 18110 xpcco2 18111 xpccatid 18112 1stfval 18115 2ndfval 18118 1stfcl 18121 2ndfcl 18122 prfcl 18127 prf1st 18128 prf2nd 18129 1st2ndprf 18130 catcxpccl 18131 xpcpropd 18132 evlfcl 18146 curf1cl 18152 curf2cl 18155 curfcl 18156 uncf1 18160 uncf2 18161 uncfcurf 18163 diag11 18167 diag12 18168 diag2 18169 curf2ndf 18171 hofcl 18183 yonedalem21 18197 yonedalem22 18202 yonedalem3b 18203 yonedalem3 18204 yonedainv 18205 yonffthlem 18206 elxpcbasex1ALT 49235 elxpcbasex2ALT 49237 xpcfucbas 49238 dfswapf2 49247 swapf1a 49255 swapf1 49258 swapf2val 49259 swapf1f1o 49261 swapf2f1oa 49263 swapfida 49266 oppc1stf 49274 oppc2ndf 49275 cofuswapf1 49280 cofuswapf2 49281 |
| Copyright terms: Public domain | W3C validator |