| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcbas | Structured version Visualization version GIF version | ||
| Description: Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.) |
| Ref | Expression |
|---|---|
| xpcbas.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| xpcbas.x | ⊢ 𝑋 = (Base‘𝐶) |
| xpcbas.y | ⊢ 𝑌 = (Base‘𝐷) |
| Ref | Expression |
|---|---|
| xpcbas | ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcbas.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 2 | xpcbas.x | . . . 4 ⊢ 𝑋 = (Base‘𝐶) | |
| 3 | xpcbas.y | . . . 4 ⊢ 𝑌 = (Base‘𝐷) | |
| 4 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 5 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 6 | eqid 2730 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 7 | eqid 2730 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 8 | simpl 482 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐶 ∈ V) | |
| 9 | simpr 484 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐷 ∈ V) | |
| 10 | eqidd 2731 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (𝑋 × 𝑌)) | |
| 11 | eqidd 2731 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣)))) = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))) | |
| 12 | eqidd 2731 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉)) = (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | xpcval 18145 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = {〈(Base‘ndx), (𝑋 × 𝑌)〉, 〈(Hom ‘ndx), (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))〉, 〈(comp‘ndx), (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) |
| 14 | 2 | fvexi 6875 | . . . . 5 ⊢ 𝑋 ∈ V |
| 15 | 3 | fvexi 6875 | . . . . 5 ⊢ 𝑌 ∈ V |
| 16 | 14, 15 | xpex 7732 | . . . 4 ⊢ (𝑋 × 𝑌) ∈ V |
| 17 | 16 | a1i 11 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) ∈ V) |
| 18 | 13, 17 | estrreslem1 18105 | . 2 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇)) |
| 19 | base0 17191 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 20 | fvprc 6853 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
| 21 | 2, 20 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑋 = ∅) |
| 22 | fvprc 6853 | . . . . . 6 ⊢ (¬ 𝐷 ∈ V → (Base‘𝐷) = ∅) | |
| 23 | 3, 22 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝐷 ∈ V → 𝑌 = ∅) |
| 24 | 21, 23 | orim12i 908 | . . . 4 ⊢ ((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) → (𝑋 = ∅ ∨ 𝑌 = ∅)) |
| 25 | ianor 983 | . . . 4 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V)) | |
| 26 | xpeq0 6136 | . . . 4 ⊢ ((𝑋 × 𝑌) = ∅ ↔ (𝑋 = ∅ ∨ 𝑌 = ∅)) | |
| 27 | 24, 25, 26 | 3imtr4i 292 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = ∅) |
| 28 | fnxpc 18144 | . . . . . . 7 ⊢ ×c Fn (V × V) | |
| 29 | fndm 6624 | . . . . . . 7 ⊢ ( ×c Fn (V × V) → dom ×c = (V × V)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ dom ×c = (V × V) |
| 31 | 30 | ndmov 7576 | . . . . 5 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ×c 𝐷) = ∅) |
| 32 | 1, 31 | eqtrid 2777 | . . . 4 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = ∅) |
| 33 | 32 | fveq2d 6865 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (Base‘𝑇) = (Base‘∅)) |
| 34 | 19, 27, 33 | 3eqtr4a 2791 | . 2 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇)) |
| 35 | 18, 34 | pm2.61i 182 | 1 ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 〈cop 4598 × cxp 5639 dom cdm 5641 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 1st c1st 7969 2nd c2nd 7970 Basecbs 17186 Hom chom 17238 compcco 17239 ×c cxpc 18136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-slot 17159 df-ndx 17171 df-base 17187 df-hom 17251 df-cco 17252 df-xpc 18140 |
| This theorem is referenced by: xpchomfval 18147 xpccofval 18150 xpchom2 18154 xpcco2 18155 xpccatid 18156 1stfval 18159 2ndfval 18162 1stfcl 18165 2ndfcl 18166 prfcl 18171 prf1st 18172 prf2nd 18173 1st2ndprf 18174 catcxpccl 18175 xpcpropd 18176 evlfcl 18190 curf1cl 18196 curf2cl 18199 curfcl 18200 uncf1 18204 uncf2 18205 uncfcurf 18207 diag11 18211 diag12 18212 diag2 18213 curf2ndf 18215 hofcl 18227 yonedalem21 18241 yonedalem22 18246 yonedalem3b 18247 yonedalem3 18248 yonedainv 18249 yonffthlem 18250 elxpcbasex1ALT 49242 elxpcbasex2ALT 49244 xpcfucbas 49245 dfswapf2 49254 swapf1a 49262 swapf1 49265 swapf2val 49266 swapf1f1o 49268 swapf2f1oa 49270 swapfida 49273 oppc1stf 49281 oppc2ndf 49282 cofuswapf1 49287 cofuswapf2 49288 |
| Copyright terms: Public domain | W3C validator |