MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcbas Structured version   Visualization version   GIF version

Theorem xpcbas 17178
Description: Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.)
Hypotheses
Ref Expression
xpcbas.t 𝑇 = (𝐶 ×c 𝐷)
xpcbas.x 𝑋 = (Base‘𝐶)
xpcbas.y 𝑌 = (Base‘𝐷)
Assertion
Ref Expression
xpcbas (𝑋 × 𝑌) = (Base‘𝑇)

Proof of Theorem xpcbas
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcbas.t . . . . 5 𝑇 = (𝐶 ×c 𝐷)
2 xpcbas.x . . . . 5 𝑋 = (Base‘𝐶)
3 xpcbas.y . . . . 5 𝑌 = (Base‘𝐷)
4 eqid 2825 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
5 eqid 2825 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
6 eqid 2825 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
7 eqid 2825 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
8 simpl 476 . . . . 5 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐶 ∈ V)
9 simpr 479 . . . . 5 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐷 ∈ V)
10 eqidd 2826 . . . . 5 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (𝑋 × 𝑌))
11 eqidd 2826 . . . . 5 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))) = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))))
12 eqidd 2826 . . . . 5 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12xpcval 17177 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = {⟨(Base‘ndx), (𝑋 × 𝑌)⟩, ⟨(Hom ‘ndx), (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))⟩, ⟨(comp‘ndx), (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩))⟩})
14 catstr 16976 . . . 4 {⟨(Base‘ndx), (𝑋 × 𝑌)⟩, ⟨(Hom ‘ndx), (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))⟩, ⟨(comp‘ndx), (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩))⟩} Struct ⟨1, 15⟩
15 baseid 16289 . . . 4 Base = Slot (Base‘ndx)
16 snsstp1 4567 . . . 4 {⟨(Base‘ndx), (𝑋 × 𝑌)⟩} ⊆ {⟨(Base‘ndx), (𝑋 × 𝑌)⟩, ⟨(Hom ‘ndx), (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))⟩, ⟨(comp‘ndx), (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩))⟩}
172fvexi 6451 . . . . . 6 𝑋 ∈ V
183fvexi 6451 . . . . . 6 𝑌 ∈ V
1917, 18xpex 7228 . . . . 5 (𝑋 × 𝑌) ∈ V
2019a1i 11 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) ∈ V)
21 eqid 2825 . . . 4 (Base‘𝑇) = (Base‘𝑇)
2213, 14, 15, 16, 20, 21strfv3 16278 . . 3 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (Base‘𝑇) = (𝑋 × 𝑌))
2322eqcomd 2831 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇))
24 base0 16282 . . 3 ∅ = (Base‘∅)
25 fvprc 6430 . . . . . 6 𝐶 ∈ V → (Base‘𝐶) = ∅)
262, 25syl5eq 2873 . . . . 5 𝐶 ∈ V → 𝑋 = ∅)
27 fvprc 6430 . . . . . 6 𝐷 ∈ V → (Base‘𝐷) = ∅)
283, 27syl5eq 2873 . . . . 5 𝐷 ∈ V → 𝑌 = ∅)
2926, 28orim12i 937 . . . 4 ((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) → (𝑋 = ∅ ∨ 𝑌 = ∅))
30 ianor 1009 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V))
31 xpeq0 5799 . . . 4 ((𝑋 × 𝑌) = ∅ ↔ (𝑋 = ∅ ∨ 𝑌 = ∅))
3229, 30, 313imtr4i 284 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = ∅)
33 fnxpc 17176 . . . . . . 7 ×c Fn (V × V)
34 fndm 6227 . . . . . . 7 ( ×c Fn (V × V) → dom ×c = (V × V))
3533, 34ax-mp 5 . . . . . 6 dom ×c = (V × V)
3635ndmov 7083 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ×c 𝐷) = ∅)
371, 36syl5eq 2873 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = ∅)
3837fveq2d 6441 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (Base‘𝑇) = (Base‘∅))
3924, 32, 383eqtr4a 2887 . 2 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇))
4023, 39pm2.61i 177 1 (𝑋 × 𝑌) = (Base‘𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 386  wo 878   = wceq 1656  wcel 2164  Vcvv 3414  c0 4146  {ctp 4403  cop 4405   × cxp 5344  dom cdm 5346   Fn wfn 6122  cfv 6127  (class class class)co 6910  cmpt2 6912  1st c1st 7431  2nd c2nd 7432  1c1 10260  5c5 11416  cdc 11828  ndxcnx 16226  Basecbs 16229  Hom chom 16323  compcco 16324   ×c cxpc 17168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-hom 16336  df-cco 16337  df-xpc 17172
This theorem is referenced by:  xpchomfval  17179  xpccofval  17182  xpchom2  17186  xpcco2  17187  xpccatid  17188  1stfval  17191  2ndfval  17194  1stfcl  17197  2ndfcl  17198  prfcl  17203  prf1st  17204  prf2nd  17205  1st2ndprf  17206  catcxpccl  17207  xpcpropd  17208  evlfcl  17222  curf1cl  17228  curf2cl  17231  curfcl  17232  uncf1  17236  uncf2  17237  uncfcurf  17239  diag11  17243  diag12  17244  diag2  17245  curf2ndf  17247  hofcl  17259  yonedalem21  17273  yonedalem22  17278  yonedalem3b  17279  yonedalem3  17280  yonedainv  17281  yonffthlem  17282
  Copyright terms: Public domain W3C validator