MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcbas Structured version   Visualization version   GIF version

Theorem xpcbas 18169
Description: Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.)
Hypotheses
Ref Expression
xpcbas.t 𝑇 = (𝐢 Γ—c 𝐷)
xpcbas.x 𝑋 = (Baseβ€˜πΆ)
xpcbas.y π‘Œ = (Baseβ€˜π·)
Assertion
Ref Expression
xpcbas (𝑋 Γ— π‘Œ) = (Baseβ€˜π‘‡)

Proof of Theorem xpcbas
Dummy variables 𝑓 𝑔 𝑒 𝑣 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcbas.t . . . 4 𝑇 = (𝐢 Γ—c 𝐷)
2 xpcbas.x . . . 4 𝑋 = (Baseβ€˜πΆ)
3 xpcbas.y . . . 4 π‘Œ = (Baseβ€˜π·)
4 eqid 2728 . . . 4 (Hom β€˜πΆ) = (Hom β€˜πΆ)
5 eqid 2728 . . . 4 (Hom β€˜π·) = (Hom β€˜π·)
6 eqid 2728 . . . 4 (compβ€˜πΆ) = (compβ€˜πΆ)
7 eqid 2728 . . . 4 (compβ€˜π·) = (compβ€˜π·)
8 simpl 482 . . . 4 ((𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ 𝐢 ∈ V)
9 simpr 484 . . . 4 ((𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ 𝐷 ∈ V)
10 eqidd 2729 . . . 4 ((𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ (𝑋 Γ— π‘Œ) = (𝑋 Γ— π‘Œ))
11 eqidd 2729 . . . 4 ((𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ (𝑒 ∈ (𝑋 Γ— π‘Œ), 𝑣 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘’)(Hom β€˜πΆ)(1st β€˜π‘£)) Γ— ((2nd β€˜π‘’)(Hom β€˜π·)(2nd β€˜π‘£)))) = (𝑒 ∈ (𝑋 Γ— π‘Œ), 𝑣 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘’)(Hom β€˜πΆ)(1st β€˜π‘£)) Γ— ((2nd β€˜π‘’)(Hom β€˜π·)(2nd β€˜π‘£)))))
12 eqidd 2729 . . . 4 ((𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ (π‘₯ ∈ ((𝑋 Γ— π‘Œ) Γ— (𝑋 Γ— π‘Œ)), 𝑦 ∈ (𝑋 Γ— π‘Œ) ↦ (𝑔 ∈ ((2nd β€˜π‘₯)(𝑒 ∈ (𝑋 Γ— π‘Œ), 𝑣 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘’)(Hom β€˜πΆ)(1st β€˜π‘£)) Γ— ((2nd β€˜π‘’)(Hom β€˜π·)(2nd β€˜π‘£))))𝑦), 𝑓 ∈ ((𝑒 ∈ (𝑋 Γ— π‘Œ), 𝑣 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘’)(Hom β€˜πΆ)(1st β€˜π‘£)) Γ— ((2nd β€˜π‘’)(Hom β€˜π·)(2nd β€˜π‘£))))β€˜π‘₯) ↦ ⟨((1st β€˜π‘”)(⟨(1st β€˜(1st β€˜π‘₯)), (1st β€˜(2nd β€˜π‘₯))⟩(compβ€˜πΆ)(1st β€˜π‘¦))(1st β€˜π‘“)), ((2nd β€˜π‘”)(⟨(2nd β€˜(1st β€˜π‘₯)), (2nd β€˜(2nd β€˜π‘₯))⟩(compβ€˜π·)(2nd β€˜π‘¦))(2nd β€˜π‘“))⟩)) = (π‘₯ ∈ ((𝑋 Γ— π‘Œ) Γ— (𝑋 Γ— π‘Œ)), 𝑦 ∈ (𝑋 Γ— π‘Œ) ↦ (𝑔 ∈ ((2nd β€˜π‘₯)(𝑒 ∈ (𝑋 Γ— π‘Œ), 𝑣 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘’)(Hom β€˜πΆ)(1st β€˜π‘£)) Γ— ((2nd β€˜π‘’)(Hom β€˜π·)(2nd β€˜π‘£))))𝑦), 𝑓 ∈ ((𝑒 ∈ (𝑋 Γ— π‘Œ), 𝑣 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘’)(Hom β€˜πΆ)(1st β€˜π‘£)) Γ— ((2nd β€˜π‘’)(Hom β€˜π·)(2nd β€˜π‘£))))β€˜π‘₯) ↦ ⟨((1st β€˜π‘”)(⟨(1st β€˜(1st β€˜π‘₯)), (1st β€˜(2nd β€˜π‘₯))⟩(compβ€˜πΆ)(1st β€˜π‘¦))(1st β€˜π‘“)), ((2nd β€˜π‘”)(⟨(2nd β€˜(1st β€˜π‘₯)), (2nd β€˜(2nd β€˜π‘₯))⟩(compβ€˜π·)(2nd β€˜π‘¦))(2nd β€˜π‘“))⟩)))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12xpcval 18168 . . 3 ((𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ 𝑇 = {⟨(Baseβ€˜ndx), (𝑋 Γ— π‘Œ)⟩, ⟨(Hom β€˜ndx), (𝑒 ∈ (𝑋 Γ— π‘Œ), 𝑣 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘’)(Hom β€˜πΆ)(1st β€˜π‘£)) Γ— ((2nd β€˜π‘’)(Hom β€˜π·)(2nd β€˜π‘£))))⟩, ⟨(compβ€˜ndx), (π‘₯ ∈ ((𝑋 Γ— π‘Œ) Γ— (𝑋 Γ— π‘Œ)), 𝑦 ∈ (𝑋 Γ— π‘Œ) ↦ (𝑔 ∈ ((2nd β€˜π‘₯)(𝑒 ∈ (𝑋 Γ— π‘Œ), 𝑣 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘’)(Hom β€˜πΆ)(1st β€˜π‘£)) Γ— ((2nd β€˜π‘’)(Hom β€˜π·)(2nd β€˜π‘£))))𝑦), 𝑓 ∈ ((𝑒 ∈ (𝑋 Γ— π‘Œ), 𝑣 ∈ (𝑋 Γ— π‘Œ) ↦ (((1st β€˜π‘’)(Hom β€˜πΆ)(1st β€˜π‘£)) Γ— ((2nd β€˜π‘’)(Hom β€˜π·)(2nd β€˜π‘£))))β€˜π‘₯) ↦ ⟨((1st β€˜π‘”)(⟨(1st β€˜(1st β€˜π‘₯)), (1st β€˜(2nd β€˜π‘₯))⟩(compβ€˜πΆ)(1st β€˜π‘¦))(1st β€˜π‘“)), ((2nd β€˜π‘”)(⟨(2nd β€˜(1st β€˜π‘₯)), (2nd β€˜(2nd β€˜π‘₯))⟩(compβ€˜π·)(2nd β€˜π‘¦))(2nd β€˜π‘“))⟩))⟩})
142fvexi 6911 . . . . 5 𝑋 ∈ V
153fvexi 6911 . . . . 5 π‘Œ ∈ V
1614, 15xpex 7755 . . . 4 (𝑋 Γ— π‘Œ) ∈ V
1716a1i 11 . . 3 ((𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ (𝑋 Γ— π‘Œ) ∈ V)
1813, 17estrreslem1 18127 . 2 ((𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ (𝑋 Γ— π‘Œ) = (Baseβ€˜π‘‡))
19 base0 17185 . . 3 βˆ… = (Baseβ€˜βˆ…)
20 fvprc 6889 . . . . . 6 (Β¬ 𝐢 ∈ V β†’ (Baseβ€˜πΆ) = βˆ…)
212, 20eqtrid 2780 . . . . 5 (Β¬ 𝐢 ∈ V β†’ 𝑋 = βˆ…)
22 fvprc 6889 . . . . . 6 (Β¬ 𝐷 ∈ V β†’ (Baseβ€˜π·) = βˆ…)
233, 22eqtrid 2780 . . . . 5 (Β¬ 𝐷 ∈ V β†’ π‘Œ = βˆ…)
2421, 23orim12i 907 . . . 4 ((Β¬ 𝐢 ∈ V ∨ Β¬ 𝐷 ∈ V) β†’ (𝑋 = βˆ… ∨ π‘Œ = βˆ…))
25 ianor 980 . . . 4 (Β¬ (𝐢 ∈ V ∧ 𝐷 ∈ V) ↔ (Β¬ 𝐢 ∈ V ∨ Β¬ 𝐷 ∈ V))
26 xpeq0 6164 . . . 4 ((𝑋 Γ— π‘Œ) = βˆ… ↔ (𝑋 = βˆ… ∨ π‘Œ = βˆ…))
2724, 25, 263imtr4i 292 . . 3 (Β¬ (𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ (𝑋 Γ— π‘Œ) = βˆ…)
28 fnxpc 18167 . . . . . . 7 Γ—c Fn (V Γ— V)
29 fndm 6657 . . . . . . 7 ( Γ—c Fn (V Γ— V) β†’ dom Γ—c = (V Γ— V))
3028, 29ax-mp 5 . . . . . 6 dom Γ—c = (V Γ— V)
3130ndmov 7605 . . . . 5 (Β¬ (𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ (𝐢 Γ—c 𝐷) = βˆ…)
321, 31eqtrid 2780 . . . 4 (Β¬ (𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ 𝑇 = βˆ…)
3332fveq2d 6901 . . 3 (Β¬ (𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ (Baseβ€˜π‘‡) = (Baseβ€˜βˆ…))
3419, 27, 333eqtr4a 2794 . 2 (Β¬ (𝐢 ∈ V ∧ 𝐷 ∈ V) β†’ (𝑋 Γ— π‘Œ) = (Baseβ€˜π‘‡))
3518, 34pm2.61i 182 1 (𝑋 Γ— π‘Œ) = (Baseβ€˜π‘‡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∧ wa 395   ∨ wo 846   = wceq 1534   ∈ wcel 2099  Vcvv 3471  βˆ…c0 4323  βŸ¨cop 4635   Γ— cxp 5676  dom cdm 5678   Fn wfn 6543  β€˜cfv 6548  (class class class)co 7420   ∈ cmpo 7422  1st c1st 7991  2nd c2nd 7992  Basecbs 17180  Hom chom 17244  compcco 17245   Γ—c cxpc 18159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-slot 17151  df-ndx 17163  df-base 17181  df-hom 17257  df-cco 17258  df-xpc 18163
This theorem is referenced by:  xpchomfval  18170  xpccofval  18173  xpchom2  18177  xpcco2  18178  xpccatid  18179  1stfval  18182  2ndfval  18185  1stfcl  18188  2ndfcl  18189  prfcl  18194  prf1st  18195  prf2nd  18196  1st2ndprf  18197  catcxpccl  18198  catcxpcclOLD  18199  xpcpropd  18200  evlfcl  18214  curf1cl  18220  curf2cl  18223  curfcl  18224  uncf1  18228  uncf2  18229  uncfcurf  18231  diag11  18235  diag12  18236  diag2  18237  curf2ndf  18239  hofcl  18251  yonedalem21  18265  yonedalem22  18270  yonedalem3b  18271  yonedalem3  18272  yonedainv  18273  yonffthlem  18274
  Copyright terms: Public domain W3C validator