MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcbas Structured version   Visualization version   GIF version

Theorem xpcbas 17422
Description: Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.)
Hypotheses
Ref Expression
xpcbas.t 𝑇 = (𝐶 ×c 𝐷)
xpcbas.x 𝑋 = (Base‘𝐶)
xpcbas.y 𝑌 = (Base‘𝐷)
Assertion
Ref Expression
xpcbas (𝑋 × 𝑌) = (Base‘𝑇)

Proof of Theorem xpcbas
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcbas.t . . . 4 𝑇 = (𝐶 ×c 𝐷)
2 xpcbas.x . . . 4 𝑋 = (Base‘𝐶)
3 xpcbas.y . . . 4 𝑌 = (Base‘𝐷)
4 eqid 2821 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 eqid 2821 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
6 eqid 2821 . . . 4 (comp‘𝐶) = (comp‘𝐶)
7 eqid 2821 . . . 4 (comp‘𝐷) = (comp‘𝐷)
8 simpl 485 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐶 ∈ V)
9 simpr 487 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐷 ∈ V)
10 eqidd 2822 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (𝑋 × 𝑌))
11 eqidd 2822 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))) = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))))
12 eqidd 2822 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12xpcval 17421 . . 3 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = {⟨(Base‘ndx), (𝑋 × 𝑌)⟩, ⟨(Hom ‘ndx), (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))⟩, ⟨(comp‘ndx), (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩))⟩})
142fvexi 6679 . . . . 5 𝑋 ∈ V
153fvexi 6679 . . . . 5 𝑌 ∈ V
1614, 15xpex 7470 . . . 4 (𝑋 × 𝑌) ∈ V
1716a1i 11 . . 3 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) ∈ V)
1813, 17estrreslem1 17381 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇))
19 base0 16530 . . 3 ∅ = (Base‘∅)
20 fvprc 6658 . . . . . 6 𝐶 ∈ V → (Base‘𝐶) = ∅)
212, 20syl5eq 2868 . . . . 5 𝐶 ∈ V → 𝑋 = ∅)
22 fvprc 6658 . . . . . 6 𝐷 ∈ V → (Base‘𝐷) = ∅)
233, 22syl5eq 2868 . . . . 5 𝐷 ∈ V → 𝑌 = ∅)
2421, 23orim12i 905 . . . 4 ((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) → (𝑋 = ∅ ∨ 𝑌 = ∅))
25 ianor 978 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V))
26 xpeq0 6012 . . . 4 ((𝑋 × 𝑌) = ∅ ↔ (𝑋 = ∅ ∨ 𝑌 = ∅))
2724, 25, 263imtr4i 294 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = ∅)
28 fnxpc 17420 . . . . . . 7 ×c Fn (V × V)
29 fndm 6450 . . . . . . 7 ( ×c Fn (V × V) → dom ×c = (V × V))
3028, 29ax-mp 5 . . . . . 6 dom ×c = (V × V)
3130ndmov 7326 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ×c 𝐷) = ∅)
321, 31syl5eq 2868 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = ∅)
3332fveq2d 6669 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (Base‘𝑇) = (Base‘∅))
3419, 27, 333eqtr4a 2882 . 2 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇))
3518, 34pm2.61i 184 1 (𝑋 × 𝑌) = (Base‘𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398  wo 843   = wceq 1533  wcel 2110  Vcvv 3495  c0 4291  cop 4567   × cxp 5548  dom cdm 5550   Fn wfn 6345  cfv 6350  (class class class)co 7150  cmpo 7152  1st c1st 7681  2nd c2nd 7682  Basecbs 16477  Hom chom 16570  compcco 16571   ×c cxpc 17412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-ndx 16480  df-slot 16481  df-base 16483  df-hom 16583  df-cco 16584  df-xpc 17416
This theorem is referenced by:  xpchomfval  17423  xpccofval  17426  xpchom2  17430  xpcco2  17431  xpccatid  17432  1stfval  17435  2ndfval  17438  1stfcl  17441  2ndfcl  17442  prfcl  17447  prf1st  17448  prf2nd  17449  1st2ndprf  17450  catcxpccl  17451  xpcpropd  17452  evlfcl  17466  curf1cl  17472  curf2cl  17475  curfcl  17476  uncf1  17480  uncf2  17481  uncfcurf  17483  diag11  17487  diag12  17488  diag2  17489  curf2ndf  17491  hofcl  17503  yonedalem21  17517  yonedalem22  17522  yonedalem3b  17523  yonedalem3  17524  yonedainv  17525  yonffthlem  17526
  Copyright terms: Public domain W3C validator