| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcbas | Structured version Visualization version GIF version | ||
| Description: Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.) |
| Ref | Expression |
|---|---|
| xpcbas.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| xpcbas.x | ⊢ 𝑋 = (Base‘𝐶) |
| xpcbas.y | ⊢ 𝑌 = (Base‘𝐷) |
| Ref | Expression |
|---|---|
| xpcbas | ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcbas.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 2 | xpcbas.x | . . . 4 ⊢ 𝑋 = (Base‘𝐶) | |
| 3 | xpcbas.y | . . . 4 ⊢ 𝑌 = (Base‘𝐷) | |
| 4 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 6 | eqid 2729 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 7 | eqid 2729 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 8 | simpl 482 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐶 ∈ V) | |
| 9 | simpr 484 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐷 ∈ V) | |
| 10 | eqidd 2730 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (𝑋 × 𝑌)) | |
| 11 | eqidd 2730 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣)))) = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))) | |
| 12 | eqidd 2730 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉)) = (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | xpcval 18138 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = {〈(Base‘ndx), (𝑋 × 𝑌)〉, 〈(Hom ‘ndx), (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))〉, 〈(comp‘ndx), (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) |
| 14 | 2 | fvexi 6872 | . . . . 5 ⊢ 𝑋 ∈ V |
| 15 | 3 | fvexi 6872 | . . . . 5 ⊢ 𝑌 ∈ V |
| 16 | 14, 15 | xpex 7729 | . . . 4 ⊢ (𝑋 × 𝑌) ∈ V |
| 17 | 16 | a1i 11 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) ∈ V) |
| 18 | 13, 17 | estrreslem1 18098 | . 2 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇)) |
| 19 | base0 17184 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 20 | fvprc 6850 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
| 21 | 2, 20 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑋 = ∅) |
| 22 | fvprc 6850 | . . . . . 6 ⊢ (¬ 𝐷 ∈ V → (Base‘𝐷) = ∅) | |
| 23 | 3, 22 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝐷 ∈ V → 𝑌 = ∅) |
| 24 | 21, 23 | orim12i 908 | . . . 4 ⊢ ((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) → (𝑋 = ∅ ∨ 𝑌 = ∅)) |
| 25 | ianor 983 | . . . 4 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V)) | |
| 26 | xpeq0 6133 | . . . 4 ⊢ ((𝑋 × 𝑌) = ∅ ↔ (𝑋 = ∅ ∨ 𝑌 = ∅)) | |
| 27 | 24, 25, 26 | 3imtr4i 292 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = ∅) |
| 28 | fnxpc 18137 | . . . . . . 7 ⊢ ×c Fn (V × V) | |
| 29 | fndm 6621 | . . . . . . 7 ⊢ ( ×c Fn (V × V) → dom ×c = (V × V)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ dom ×c = (V × V) |
| 31 | 30 | ndmov 7573 | . . . . 5 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ×c 𝐷) = ∅) |
| 32 | 1, 31 | eqtrid 2776 | . . . 4 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = ∅) |
| 33 | 32 | fveq2d 6862 | . . 3 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (Base‘𝑇) = (Base‘∅)) |
| 34 | 19, 27, 33 | 3eqtr4a 2790 | . 2 ⊢ (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇)) |
| 35 | 18, 34 | pm2.61i 182 | 1 ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 〈cop 4595 × cxp 5636 dom cdm 5638 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 2nd c2nd 7967 Basecbs 17179 Hom chom 17231 compcco 17232 ×c cxpc 18129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-xpc 18133 |
| This theorem is referenced by: xpchomfval 18140 xpccofval 18143 xpchom2 18147 xpcco2 18148 xpccatid 18149 1stfval 18152 2ndfval 18155 1stfcl 18158 2ndfcl 18159 prfcl 18164 prf1st 18165 prf2nd 18166 1st2ndprf 18167 catcxpccl 18168 xpcpropd 18169 evlfcl 18183 curf1cl 18189 curf2cl 18192 curfcl 18193 uncf1 18197 uncf2 18198 uncfcurf 18200 diag11 18204 diag12 18205 diag2 18206 curf2ndf 18208 hofcl 18220 yonedalem21 18234 yonedalem22 18239 yonedalem3b 18240 yonedalem3 18241 yonedainv 18242 yonffthlem 18243 elxpcbasex1ALT 49238 elxpcbasex2ALT 49240 xpcfucbas 49241 dfswapf2 49250 swapf1a 49258 swapf1 49261 swapf2val 49262 swapf1f1o 49264 swapf2f1oa 49266 swapfida 49269 oppc1stf 49277 oppc2ndf 49278 cofuswapf1 49283 cofuswapf2 49284 |
| Copyright terms: Public domain | W3C validator |