MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcan Structured version   Visualization version   GIF version

Theorem xpcan 6028
Description: Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.)
Assertion
Ref Expression
xpcan (𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem xpcan
StepHypRef Expression
1 xp11 6027 . . 3 ((𝐶 ≠ ∅ ∧ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ (𝐶 = 𝐶𝐴 = 𝐵)))
2 eqid 2821 . . . 4 𝐶 = 𝐶
32biantrur 533 . . 3 (𝐴 = 𝐵 ↔ (𝐶 = 𝐶𝐴 = 𝐵))
41, 3syl6bbr 291 . 2 ((𝐶 ≠ ∅ ∧ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
5 nne 3020 . . . 4 𝐴 ≠ ∅ ↔ 𝐴 = ∅)
6 simpr 487 . . . . 5 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → 𝐴 = ∅)
7 xpeq2 5571 . . . . . . . . . 10 (𝐴 = ∅ → (𝐶 × 𝐴) = (𝐶 × ∅))
8 xp0 6010 . . . . . . . . . 10 (𝐶 × ∅) = ∅
97, 8syl6eq 2872 . . . . . . . . 9 (𝐴 = ∅ → (𝐶 × 𝐴) = ∅)
109eqeq1d 2823 . . . . . . . 8 (𝐴 = ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ ∅ = (𝐶 × 𝐵)))
11 eqcom 2828 . . . . . . . 8 (∅ = (𝐶 × 𝐵) ↔ (𝐶 × 𝐵) = ∅)
1210, 11syl6bb 289 . . . . . . 7 (𝐴 = ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ (𝐶 × 𝐵) = ∅))
1312adantl 484 . . . . . 6 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ (𝐶 × 𝐵) = ∅))
14 df-ne 3017 . . . . . . . 8 (𝐶 ≠ ∅ ↔ ¬ 𝐶 = ∅)
15 xpeq0 6012 . . . . . . . . 9 ((𝐶 × 𝐵) = ∅ ↔ (𝐶 = ∅ ∨ 𝐵 = ∅))
16 orel1 885 . . . . . . . . 9 𝐶 = ∅ → ((𝐶 = ∅ ∨ 𝐵 = ∅) → 𝐵 = ∅))
1715, 16syl5bi 244 . . . . . . . 8 𝐶 = ∅ → ((𝐶 × 𝐵) = ∅ → 𝐵 = ∅))
1814, 17sylbi 219 . . . . . . 7 (𝐶 ≠ ∅ → ((𝐶 × 𝐵) = ∅ → 𝐵 = ∅))
1918adantr 483 . . . . . 6 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐵) = ∅ → 𝐵 = ∅))
2013, 19sylbid 242 . . . . 5 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) → 𝐵 = ∅))
21 eqtr3 2843 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = 𝐵)
226, 20, 21syl6an 682 . . . 4 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) → 𝐴 = 𝐵))
235, 22sylan2b 595 . . 3 ((𝐶 ≠ ∅ ∧ ¬ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) → 𝐴 = 𝐵))
24 xpeq2 5571 . . 3 (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵))
2523, 24impbid1 227 . 2 ((𝐶 ≠ ∅ ∧ ¬ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
264, 25pm2.61dan 811 1 (𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wne 3016  c0 4291   × cxp 5548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-br 5060  df-opab 5122  df-xp 5556  df-rel 5557  df-cnv 5558  df-dm 5560  df-rn 5561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator