MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcan Structured version   Visualization version   GIF version

Theorem xpcan 6123
Description: Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.)
Assertion
Ref Expression
xpcan (𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem xpcan
StepHypRef Expression
1 xp11 6122 . . 3 ((𝐶 ≠ ∅ ∧ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ (𝐶 = 𝐶𝐴 = 𝐵)))
2 eqid 2731 . . . 4 𝐶 = 𝐶
32biantrur 530 . . 3 (𝐴 = 𝐵 ↔ (𝐶 = 𝐶𝐴 = 𝐵))
41, 3bitr4di 289 . 2 ((𝐶 ≠ ∅ ∧ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
5 nne 2932 . . . 4 𝐴 ≠ ∅ ↔ 𝐴 = ∅)
6 simpr 484 . . . . 5 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → 𝐴 = ∅)
7 xpeq2 5637 . . . . . . . . . 10 (𝐴 = ∅ → (𝐶 × 𝐴) = (𝐶 × ∅))
8 xp0 6105 . . . . . . . . . 10 (𝐶 × ∅) = ∅
97, 8eqtrdi 2782 . . . . . . . . 9 (𝐴 = ∅ → (𝐶 × 𝐴) = ∅)
109eqeq1d 2733 . . . . . . . 8 (𝐴 = ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ ∅ = (𝐶 × 𝐵)))
11 eqcom 2738 . . . . . . . 8 (∅ = (𝐶 × 𝐵) ↔ (𝐶 × 𝐵) = ∅)
1210, 11bitrdi 287 . . . . . . 7 (𝐴 = ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ (𝐶 × 𝐵) = ∅))
1312adantl 481 . . . . . 6 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ (𝐶 × 𝐵) = ∅))
14 df-ne 2929 . . . . . . . 8 (𝐶 ≠ ∅ ↔ ¬ 𝐶 = ∅)
15 xpeq0 6107 . . . . . . . . 9 ((𝐶 × 𝐵) = ∅ ↔ (𝐶 = ∅ ∨ 𝐵 = ∅))
16 orel1 888 . . . . . . . . 9 𝐶 = ∅ → ((𝐶 = ∅ ∨ 𝐵 = ∅) → 𝐵 = ∅))
1715, 16biimtrid 242 . . . . . . . 8 𝐶 = ∅ → ((𝐶 × 𝐵) = ∅ → 𝐵 = ∅))
1814, 17sylbi 217 . . . . . . 7 (𝐶 ≠ ∅ → ((𝐶 × 𝐵) = ∅ → 𝐵 = ∅))
1918adantr 480 . . . . . 6 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐵) = ∅ → 𝐵 = ∅))
2013, 19sylbid 240 . . . . 5 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) → 𝐵 = ∅))
21 eqtr3 2753 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = 𝐵)
226, 20, 21syl6an 684 . . . 4 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) → 𝐴 = 𝐵))
235, 22sylan2b 594 . . 3 ((𝐶 ≠ ∅ ∧ ¬ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) → 𝐴 = 𝐵))
24 xpeq2 5637 . . 3 (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵))
2523, 24impbid1 225 . 2 ((𝐶 ≠ ∅ ∧ ¬ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
264, 25pm2.61dan 812 1 (𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wne 2928  c0 4283   × cxp 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627
This theorem is referenced by:  diag1f1lem  49337  diag2f1lem  49339
  Copyright terms: Public domain W3C validator