MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcan Structured version   Visualization version   GIF version

Theorem xpcan 6079
Description: Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.)
Assertion
Ref Expression
xpcan (𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem xpcan
StepHypRef Expression
1 xp11 6078 . . 3 ((𝐶 ≠ ∅ ∧ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ (𝐶 = 𝐶𝐴 = 𝐵)))
2 eqid 2738 . . . 4 𝐶 = 𝐶
32biantrur 531 . . 3 (𝐴 = 𝐵 ↔ (𝐶 = 𝐶𝐴 = 𝐵))
41, 3bitr4di 289 . 2 ((𝐶 ≠ ∅ ∧ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
5 nne 2947 . . . 4 𝐴 ≠ ∅ ↔ 𝐴 = ∅)
6 simpr 485 . . . . 5 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → 𝐴 = ∅)
7 xpeq2 5610 . . . . . . . . . 10 (𝐴 = ∅ → (𝐶 × 𝐴) = (𝐶 × ∅))
8 xp0 6061 . . . . . . . . . 10 (𝐶 × ∅) = ∅
97, 8eqtrdi 2794 . . . . . . . . 9 (𝐴 = ∅ → (𝐶 × 𝐴) = ∅)
109eqeq1d 2740 . . . . . . . 8 (𝐴 = ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ ∅ = (𝐶 × 𝐵)))
11 eqcom 2745 . . . . . . . 8 (∅ = (𝐶 × 𝐵) ↔ (𝐶 × 𝐵) = ∅)
1210, 11bitrdi 287 . . . . . . 7 (𝐴 = ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ (𝐶 × 𝐵) = ∅))
1312adantl 482 . . . . . 6 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ (𝐶 × 𝐵) = ∅))
14 df-ne 2944 . . . . . . . 8 (𝐶 ≠ ∅ ↔ ¬ 𝐶 = ∅)
15 xpeq0 6063 . . . . . . . . 9 ((𝐶 × 𝐵) = ∅ ↔ (𝐶 = ∅ ∨ 𝐵 = ∅))
16 orel1 886 . . . . . . . . 9 𝐶 = ∅ → ((𝐶 = ∅ ∨ 𝐵 = ∅) → 𝐵 = ∅))
1715, 16syl5bi 241 . . . . . . . 8 𝐶 = ∅ → ((𝐶 × 𝐵) = ∅ → 𝐵 = ∅))
1814, 17sylbi 216 . . . . . . 7 (𝐶 ≠ ∅ → ((𝐶 × 𝐵) = ∅ → 𝐵 = ∅))
1918adantr 481 . . . . . 6 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐵) = ∅ → 𝐵 = ∅))
2013, 19sylbid 239 . . . . 5 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) → 𝐵 = ∅))
21 eqtr3 2764 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = 𝐵)
226, 20, 21syl6an 681 . . . 4 ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) → 𝐴 = 𝐵))
235, 22sylan2b 594 . . 3 ((𝐶 ≠ ∅ ∧ ¬ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) → 𝐴 = 𝐵))
24 xpeq2 5610 . . 3 (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵))
2523, 24impbid1 224 . 2 ((𝐶 ≠ ∅ ∧ ¬ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
264, 25pm2.61dan 810 1 (𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wne 2943  c0 4256   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator