Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arearect Structured version   Visualization version   GIF version

Theorem arearect 43198
Description: The area of a rectangle whose sides are parallel to the coordinate axes in (ℝ × ℝ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019.)
Hypotheses
Ref Expression
arearect.1 𝐴 ∈ ℝ
arearect.2 𝐵 ∈ ℝ
arearect.3 𝐶 ∈ ℝ
arearect.4 𝐷 ∈ ℝ
arearect.5 𝐴𝐵
arearect.6 𝐶𝐷
arearect.7 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷))
Assertion
Ref Expression
arearect (area‘𝑆) = ((𝐵𝐴) · (𝐷𝐶))

Proof of Theorem arearect
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 arearect.7 . . . . 5 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷))
2 arearect.1 . . . . . . 7 𝐴 ∈ ℝ
3 arearect.2 . . . . . . 7 𝐵 ∈ ℝ
4 iccssre 13332 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
52, 3, 4mp2an 692 . . . . . 6 (𝐴[,]𝐵) ⊆ ℝ
6 arearect.3 . . . . . . 7 𝐶 ∈ ℝ
7 arearect.4 . . . . . . 7 𝐷 ∈ ℝ
8 iccssre 13332 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶[,]𝐷) ⊆ ℝ)
96, 7, 8mp2an 692 . . . . . 6 (𝐶[,]𝐷) ⊆ ℝ
10 xpss12 5634 . . . . . 6 (((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ) → ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⊆ (ℝ × ℝ))
115, 9, 10mp2an 692 . . . . 5 ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⊆ (ℝ × ℝ)
121, 11eqsstri 3982 . . . 4 𝑆 ⊆ (ℝ × ℝ)
13 iftrue 4482 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (𝐷𝐶))
141imaeq1i 6008 . . . . . . . . . . . . . . 15 (𝑆 “ {𝑥}) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥})
15 iftrue 4482 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (𝐶[,]𝐷))
16 xpimasn 6134 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = (𝐶[,]𝐷))
1715, 16eqtr4d 2767 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}))
18 iffalse 4485 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = ∅)
19 disjsn 4663 . . . . . . . . . . . . . . . . . 18 (((𝐴[,]𝐵) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴[,]𝐵))
20 xpima1 6132 . . . . . . . . . . . . . . . . . 18 (((𝐴[,]𝐵) ∩ {𝑥}) = ∅ → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = ∅)
2119, 20sylbir 235 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = ∅)
2218, 21eqtr4d 2767 . . . . . . . . . . . . . . . 16 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}))
2317, 22pm2.61i 182 . . . . . . . . . . . . . . 15 if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥})
2414, 23eqtr4i 2755 . . . . . . . . . . . . . 14 (𝑆 “ {𝑥}) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)
2524fveq2i 6825 . . . . . . . . . . . . 13 (vol‘(𝑆 “ {𝑥})) = (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅))
2615fveq2d 6826 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)) = (vol‘(𝐶[,]𝐷)))
2725, 26eqtrid 2776 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (vol‘(𝐶[,]𝐷)))
28 iccmbl 25465 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶[,]𝐷) ∈ dom vol)
296, 7, 28mp2an 692 . . . . . . . . . . . . . 14 (𝐶[,]𝐷) ∈ dom vol
30 mblvol 25429 . . . . . . . . . . . . . 14 ((𝐶[,]𝐷) ∈ dom vol → (vol‘(𝐶[,]𝐷)) = (vol*‘(𝐶[,]𝐷)))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 (vol‘(𝐶[,]𝐷)) = (vol*‘(𝐶[,]𝐷))
32 arearect.6 . . . . . . . . . . . . . 14 𝐶𝐷
33 ovolicc 25422 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶𝐷) → (vol*‘(𝐶[,]𝐷)) = (𝐷𝐶))
346, 7, 32, 33mp3an 1463 . . . . . . . . . . . . 13 (vol*‘(𝐶[,]𝐷)) = (𝐷𝐶)
3531, 34eqtri 2752 . . . . . . . . . . . 12 (vol‘(𝐶[,]𝐷)) = (𝐷𝐶)
3627, 35eqtrdi 2780 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (𝐷𝐶))
3713, 36eqtr4d 2767 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥})))
38 iffalse 4485 . . . . . . . . . . 11 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = 0)
3918fveq2d 6826 . . . . . . . . . . . . 13 𝑥 ∈ (𝐴[,]𝐵) → (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)) = (vol‘∅))
4025, 39eqtrid 2776 . . . . . . . . . . . 12 𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (vol‘∅))
41 0mbl 25438 . . . . . . . . . . . . . 14 ∅ ∈ dom vol
42 mblvol 25429 . . . . . . . . . . . . . 14 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
4341, 42ax-mp 5 . . . . . . . . . . . . 13 (vol‘∅) = (vol*‘∅)
44 ovol0 25392 . . . . . . . . . . . . 13 (vol*‘∅) = 0
4543, 44eqtri 2752 . . . . . . . . . . . 12 (vol‘∅) = 0
4640, 45eqtrdi 2780 . . . . . . . . . . 11 𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = 0)
4738, 46eqtr4d 2767 . . . . . . . . . 10 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥})))
4837, 47pm2.61i 182 . . . . . . . . 9 if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥}))
4948eqcomi 2738 . . . . . . . 8 (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0)
5049a1i 11 . . . . . . 7 (𝑥 ∈ ℝ → (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0))
517, 6resubcli 11426 . . . . . . . 8 (𝐷𝐶) ∈ ℝ
52 0re 11117 . . . . . . . 8 0 ∈ ℝ
5351, 52ifcli 4524 . . . . . . 7 if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) ∈ ℝ
5450, 53eqeltrdi 2836 . . . . . 6 (𝑥 ∈ ℝ → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
55 volf 25428 . . . . . . . 8 vol:dom vol⟶(0[,]+∞)
56 ffun 6655 . . . . . . . 8 (vol:dom vol⟶(0[,]+∞) → Fun vol)
5755, 56ax-mp 5 . . . . . . 7 Fun vol
5829, 41ifcli 4524 . . . . . . . 8 if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) ∈ dom vol
5924, 58eqeltri 2824 . . . . . . 7 (𝑆 “ {𝑥}) ∈ dom vol
60 fvimacnv 6987 . . . . . . 7 ((Fun vol ∧ (𝑆 “ {𝑥}) ∈ dom vol) → ((vol‘(𝑆 “ {𝑥})) ∈ ℝ ↔ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)))
6157, 59, 60mp2an 692 . . . . . 6 ((vol‘(𝑆 “ {𝑥})) ∈ ℝ ↔ (𝑆 “ {𝑥}) ∈ (vol “ ℝ))
6254, 61sylib 218 . . . . 5 (𝑥 ∈ ℝ → (𝑆 “ {𝑥}) ∈ (vol “ ℝ))
6362rgen 3046 . . . 4 𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)
645a1i 11 . . . . . 6 (0 ∈ ℝ → (𝐴[,]𝐵) ⊆ ℝ)
65 rembl 25439 . . . . . . 7 ℝ ∈ dom vol
6665a1i 11 . . . . . 6 (0 ∈ ℝ → ℝ ∈ dom vol)
6736, 51eqeltrdi 2836 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
6867adantl 481 . . . . . 6 ((0 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
69 eldifn 4083 . . . . . . . 8 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
7069, 46syl 17 . . . . . . 7 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) → (vol‘(𝑆 “ {𝑥})) = 0)
7170adantl 481 . . . . . 6 ((0 ∈ ℝ ∧ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))) → (vol‘(𝑆 “ {𝑥})) = 0)
7236mpteq2ia 5187 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶))
7351recni 11129 . . . . . . . . . 10 (𝐷𝐶) ∈ ℂ
74 ax-resscn 11066 . . . . . . . . . . 11 ℝ ⊆ ℂ
755, 74sstri 3945 . . . . . . . . . 10 (𝐴[,]𝐵) ⊆ ℂ
76 ssid 3958 . . . . . . . . . 10 ℂ ⊆ ℂ
77 cncfmptc 24803 . . . . . . . . . 10 (((𝐷𝐶) ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7873, 75, 76, 77mp3an 1463 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ)
79 cniccibl 25740 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ 𝐿1)
802, 3, 78, 79mp3an 1463 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ 𝐿1
8172, 80eqeltri 2824 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1
8281a1i 11 . . . . . 6 (0 ∈ ℝ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)
8364, 66, 68, 71, 82iblss2 25705 . . . . 5 (0 ∈ ℝ → (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)
8452, 83ax-mp 5 . . . 4 (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1
85 dmarea 26865 . . . 4 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1))
8612, 63, 84, 85mpbir3an 1342 . . 3 𝑆 ∈ dom area
87 areaval 26872 . . 3 (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥)
8886, 87ax-mp 5 . 2 (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥
89 itgeq2 25677 . . . 4 (∀𝑥 ∈ ℝ (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) → ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥)
9089, 50mprg 3050 . . 3 ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥
91 iccmbl 25465 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol)
922, 3, 91mp2an 692 . . . . 5 (𝐴[,]𝐵) ∈ dom vol
93 mblvol 25429 . . . . . . . 8 ((𝐴[,]𝐵) ∈ dom vol → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
9492, 93ax-mp 5 . . . . . . 7 (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))
95 arearect.5 . . . . . . . 8 𝐴𝐵
96 ovolicc 25422 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴))
972, 3, 95, 96mp3an 1463 . . . . . . 7 (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴)
9894, 97eqtri 2752 . . . . . 6 (vol‘(𝐴[,]𝐵)) = (𝐵𝐴)
993, 2resubcli 11426 . . . . . 6 (𝐵𝐴) ∈ ℝ
10098, 99eqeltri 2824 . . . . 5 (vol‘(𝐴[,]𝐵)) ∈ ℝ
101 itgconst 25718 . . . . 5 (((𝐴[,]𝐵) ∈ dom vol ∧ (vol‘(𝐴[,]𝐵)) ∈ ℝ ∧ (𝐷𝐶) ∈ ℂ) → ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ((𝐷𝐶) · (vol‘(𝐴[,]𝐵))))
10292, 100, 73, 101mp3an 1463 . . . 4 ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ((𝐷𝐶) · (vol‘(𝐴[,]𝐵)))
103 itgss2 25712 . . . . 5 ((𝐴[,]𝐵) ⊆ ℝ → ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥)
1045, 103ax-mp 5 . . . 4 ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥
10598oveq2i 7360 . . . 4 ((𝐷𝐶) · (vol‘(𝐴[,]𝐵))) = ((𝐷𝐶) · (𝐵𝐴))
106102, 104, 1053eqtr3i 2760 . . 3 ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥 = ((𝐷𝐶) · (𝐵𝐴))
10790, 106eqtri 2752 . 2 ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ((𝐷𝐶) · (𝐵𝐴))
10899recni 11129 . . 3 (𝐵𝐴) ∈ ℂ
10973, 108mulcomi 11123 . 2 ((𝐷𝐶) · (𝐵𝐴)) = ((𝐵𝐴) · (𝐷𝐶))
11088, 107, 1093eqtri 2756 1 (area‘𝑆) = ((𝐵𝐴) · (𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wral 3044  cdif 3900  cin 3902  wss 3903  c0 4284  ifcif 4476  {csn 4577   class class class wbr 5092  cmpt 5173   × cxp 5617  ccnv 5618  dom cdm 5619  cima 5622  Fun wfun 6476  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009   · cmul 11014  +∞cpnf 11146  cle 11150  cmin 11347  [,]cicc 13251  cnccncf 24767  vol*covol 25361  volcvol 25362  𝐿1cibl 25516  citg 25517  areacarea 26863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-ibl 25521  df-itg 25522  df-0p 25569  df-area 26864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator