Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arearect Structured version   Visualization version   GIF version

Theorem arearect 43318
Description: The area of a rectangle whose sides are parallel to the coordinate axes in (ℝ × ℝ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019.)
Hypotheses
Ref Expression
arearect.1 𝐴 ∈ ℝ
arearect.2 𝐵 ∈ ℝ
arearect.3 𝐶 ∈ ℝ
arearect.4 𝐷 ∈ ℝ
arearect.5 𝐴𝐵
arearect.6 𝐶𝐷
arearect.7 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷))
Assertion
Ref Expression
arearect (area‘𝑆) = ((𝐵𝐴) · (𝐷𝐶))

Proof of Theorem arearect
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 arearect.7 . . . . 5 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷))
2 arearect.1 . . . . . . 7 𝐴 ∈ ℝ
3 arearect.2 . . . . . . 7 𝐵 ∈ ℝ
4 iccssre 13329 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
52, 3, 4mp2an 692 . . . . . 6 (𝐴[,]𝐵) ⊆ ℝ
6 arearect.3 . . . . . . 7 𝐶 ∈ ℝ
7 arearect.4 . . . . . . 7 𝐷 ∈ ℝ
8 iccssre 13329 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶[,]𝐷) ⊆ ℝ)
96, 7, 8mp2an 692 . . . . . 6 (𝐶[,]𝐷) ⊆ ℝ
10 xpss12 5629 . . . . . 6 (((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ) → ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⊆ (ℝ × ℝ))
115, 9, 10mp2an 692 . . . . 5 ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⊆ (ℝ × ℝ)
121, 11eqsstri 3976 . . . 4 𝑆 ⊆ (ℝ × ℝ)
13 iftrue 4478 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (𝐷𝐶))
141imaeq1i 6005 . . . . . . . . . . . . . . 15 (𝑆 “ {𝑥}) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥})
15 iftrue 4478 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (𝐶[,]𝐷))
16 xpimasn 6132 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = (𝐶[,]𝐷))
1715, 16eqtr4d 2769 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}))
18 iffalse 4481 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = ∅)
19 disjsn 4661 . . . . . . . . . . . . . . . . . 18 (((𝐴[,]𝐵) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴[,]𝐵))
20 xpima1 6130 . . . . . . . . . . . . . . . . . 18 (((𝐴[,]𝐵) ∩ {𝑥}) = ∅ → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = ∅)
2119, 20sylbir 235 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = ∅)
2218, 21eqtr4d 2769 . . . . . . . . . . . . . . . 16 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}))
2317, 22pm2.61i 182 . . . . . . . . . . . . . . 15 if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥})
2414, 23eqtr4i 2757 . . . . . . . . . . . . . 14 (𝑆 “ {𝑥}) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)
2524fveq2i 6825 . . . . . . . . . . . . 13 (vol‘(𝑆 “ {𝑥})) = (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅))
2615fveq2d 6826 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)) = (vol‘(𝐶[,]𝐷)))
2725, 26eqtrid 2778 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (vol‘(𝐶[,]𝐷)))
28 iccmbl 25494 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶[,]𝐷) ∈ dom vol)
296, 7, 28mp2an 692 . . . . . . . . . . . . . 14 (𝐶[,]𝐷) ∈ dom vol
30 mblvol 25458 . . . . . . . . . . . . . 14 ((𝐶[,]𝐷) ∈ dom vol → (vol‘(𝐶[,]𝐷)) = (vol*‘(𝐶[,]𝐷)))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 (vol‘(𝐶[,]𝐷)) = (vol*‘(𝐶[,]𝐷))
32 arearect.6 . . . . . . . . . . . . . 14 𝐶𝐷
33 ovolicc 25451 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶𝐷) → (vol*‘(𝐶[,]𝐷)) = (𝐷𝐶))
346, 7, 32, 33mp3an 1463 . . . . . . . . . . . . 13 (vol*‘(𝐶[,]𝐷)) = (𝐷𝐶)
3531, 34eqtri 2754 . . . . . . . . . . . 12 (vol‘(𝐶[,]𝐷)) = (𝐷𝐶)
3627, 35eqtrdi 2782 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (𝐷𝐶))
3713, 36eqtr4d 2769 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥})))
38 iffalse 4481 . . . . . . . . . . 11 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = 0)
3918fveq2d 6826 . . . . . . . . . . . . 13 𝑥 ∈ (𝐴[,]𝐵) → (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)) = (vol‘∅))
4025, 39eqtrid 2778 . . . . . . . . . . . 12 𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (vol‘∅))
41 0mbl 25467 . . . . . . . . . . . . . 14 ∅ ∈ dom vol
42 mblvol 25458 . . . . . . . . . . . . . 14 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
4341, 42ax-mp 5 . . . . . . . . . . . . 13 (vol‘∅) = (vol*‘∅)
44 ovol0 25421 . . . . . . . . . . . . 13 (vol*‘∅) = 0
4543, 44eqtri 2754 . . . . . . . . . . . 12 (vol‘∅) = 0
4640, 45eqtrdi 2782 . . . . . . . . . . 11 𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = 0)
4738, 46eqtr4d 2769 . . . . . . . . . 10 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥})))
4837, 47pm2.61i 182 . . . . . . . . 9 if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥}))
4948eqcomi 2740 . . . . . . . 8 (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0)
5049a1i 11 . . . . . . 7 (𝑥 ∈ ℝ → (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0))
517, 6resubcli 11423 . . . . . . . 8 (𝐷𝐶) ∈ ℝ
52 0re 11114 . . . . . . . 8 0 ∈ ℝ
5351, 52ifcli 4520 . . . . . . 7 if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) ∈ ℝ
5450, 53eqeltrdi 2839 . . . . . 6 (𝑥 ∈ ℝ → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
55 volf 25457 . . . . . . . 8 vol:dom vol⟶(0[,]+∞)
56 ffun 6654 . . . . . . . 8 (vol:dom vol⟶(0[,]+∞) → Fun vol)
5755, 56ax-mp 5 . . . . . . 7 Fun vol
5829, 41ifcli 4520 . . . . . . . 8 if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) ∈ dom vol
5924, 58eqeltri 2827 . . . . . . 7 (𝑆 “ {𝑥}) ∈ dom vol
60 fvimacnv 6986 . . . . . . 7 ((Fun vol ∧ (𝑆 “ {𝑥}) ∈ dom vol) → ((vol‘(𝑆 “ {𝑥})) ∈ ℝ ↔ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)))
6157, 59, 60mp2an 692 . . . . . 6 ((vol‘(𝑆 “ {𝑥})) ∈ ℝ ↔ (𝑆 “ {𝑥}) ∈ (vol “ ℝ))
6254, 61sylib 218 . . . . 5 (𝑥 ∈ ℝ → (𝑆 “ {𝑥}) ∈ (vol “ ℝ))
6362rgen 3049 . . . 4 𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)
645a1i 11 . . . . . 6 (0 ∈ ℝ → (𝐴[,]𝐵) ⊆ ℝ)
65 rembl 25468 . . . . . . 7 ℝ ∈ dom vol
6665a1i 11 . . . . . 6 (0 ∈ ℝ → ℝ ∈ dom vol)
6736, 51eqeltrdi 2839 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
6867adantl 481 . . . . . 6 ((0 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
69 eldifn 4079 . . . . . . . 8 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
7069, 46syl 17 . . . . . . 7 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) → (vol‘(𝑆 “ {𝑥})) = 0)
7170adantl 481 . . . . . 6 ((0 ∈ ℝ ∧ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))) → (vol‘(𝑆 “ {𝑥})) = 0)
7236mpteq2ia 5184 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶))
7351recni 11126 . . . . . . . . . 10 (𝐷𝐶) ∈ ℂ
74 ax-resscn 11063 . . . . . . . . . . 11 ℝ ⊆ ℂ
755, 74sstri 3939 . . . . . . . . . 10 (𝐴[,]𝐵) ⊆ ℂ
76 ssid 3952 . . . . . . . . . 10 ℂ ⊆ ℂ
77 cncfmptc 24832 . . . . . . . . . 10 (((𝐷𝐶) ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7873, 75, 76, 77mp3an 1463 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ)
79 cniccibl 25769 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ 𝐿1)
802, 3, 78, 79mp3an 1463 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ 𝐿1
8172, 80eqeltri 2827 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1
8281a1i 11 . . . . . 6 (0 ∈ ℝ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)
8364, 66, 68, 71, 82iblss2 25734 . . . . 5 (0 ∈ ℝ → (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)
8452, 83ax-mp 5 . . . 4 (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1
85 dmarea 26894 . . . 4 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1))
8612, 63, 84, 85mpbir3an 1342 . . 3 𝑆 ∈ dom area
87 areaval 26901 . . 3 (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥)
8886, 87ax-mp 5 . 2 (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥
89 itgeq2 25706 . . . 4 (∀𝑥 ∈ ℝ (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) → ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥)
9089, 50mprg 3053 . . 3 ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥
91 iccmbl 25494 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol)
922, 3, 91mp2an 692 . . . . 5 (𝐴[,]𝐵) ∈ dom vol
93 mblvol 25458 . . . . . . . 8 ((𝐴[,]𝐵) ∈ dom vol → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
9492, 93ax-mp 5 . . . . . . 7 (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))
95 arearect.5 . . . . . . . 8 𝐴𝐵
96 ovolicc 25451 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴))
972, 3, 95, 96mp3an 1463 . . . . . . 7 (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴)
9894, 97eqtri 2754 . . . . . 6 (vol‘(𝐴[,]𝐵)) = (𝐵𝐴)
993, 2resubcli 11423 . . . . . 6 (𝐵𝐴) ∈ ℝ
10098, 99eqeltri 2827 . . . . 5 (vol‘(𝐴[,]𝐵)) ∈ ℝ
101 itgconst 25747 . . . . 5 (((𝐴[,]𝐵) ∈ dom vol ∧ (vol‘(𝐴[,]𝐵)) ∈ ℝ ∧ (𝐷𝐶) ∈ ℂ) → ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ((𝐷𝐶) · (vol‘(𝐴[,]𝐵))))
10292, 100, 73, 101mp3an 1463 . . . 4 ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ((𝐷𝐶) · (vol‘(𝐴[,]𝐵)))
103 itgss2 25741 . . . . 5 ((𝐴[,]𝐵) ⊆ ℝ → ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥)
1045, 103ax-mp 5 . . . 4 ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥
10598oveq2i 7357 . . . 4 ((𝐷𝐶) · (vol‘(𝐴[,]𝐵))) = ((𝐷𝐶) · (𝐵𝐴))
106102, 104, 1053eqtr3i 2762 . . 3 ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥 = ((𝐷𝐶) · (𝐵𝐴))
10790, 106eqtri 2754 . 2 ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ((𝐷𝐶) · (𝐵𝐴))
10899recni 11126 . . 3 (𝐵𝐴) ∈ ℂ
10973, 108mulcomi 11120 . 2 ((𝐷𝐶) · (𝐵𝐴)) = ((𝐵𝐴) · (𝐷𝐶))
11088, 107, 1093eqtri 2758 1 (area‘𝑆) = ((𝐵𝐴) · (𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  wral 3047  cdif 3894  cin 3896  wss 3897  c0 4280  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  ccnv 5613  dom cdm 5614  cima 5617  Fun wfun 6475  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006   · cmul 11011  +∞cpnf 11143  cle 11147  cmin 11344  [,]cicc 13248  cnccncf 24796  vol*covol 25390  volcvol 25391  𝐿1cibl 25545  citg 25546  areacarea 26892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-ovol 25392  df-vol 25393  df-mbf 25547  df-itg1 25548  df-itg2 25549  df-ibl 25550  df-itg 25551  df-0p 25598  df-area 26893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator