MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpima2 Structured version   Visualization version   GIF version

Theorem xpima2 6076
Description: Direct image by a Cartesian product (case of nonempty intersection with the domain). (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima2 ((𝐴𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)

Proof of Theorem xpima2
StepHypRef Expression
1 xpima 6074 . 2 ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)
2 ifnefalse 4468 . 2 ((𝐴𝐶) ≠ ∅ → if((𝐴𝐶) = ∅, ∅, 𝐵) = 𝐵)
31, 2eqtrid 2790 1 ((𝐴𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2942  cin 3882  c0 4253  ifcif 4456   × cxp 5578  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  xpimasn  6077  ustuqtop1  23301  ustuqtop5  23305  brtrclfv2  41224  aacllem  46391
  Copyright terms: Public domain W3C validator