| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpima2 | Structured version Visualization version GIF version | ||
| Description: Direct image by a Cartesian product (case of nonempty intersection with the domain). (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| Ref | Expression |
|---|---|
| xpima2 | ⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpima 6176 | . 2 ⊢ ((𝐴 × 𝐵) “ 𝐶) = if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) | |
| 2 | ifnefalse 4517 | . 2 ⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) = 𝐵) | |
| 3 | 1, 2 | eqtrid 2783 | 1 ⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2933 ∩ cin 3930 ∅c0 4313 ifcif 4505 × cxp 5657 “ cima 5662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 |
| This theorem is referenced by: xpimasn 6179 ustuqtop1 24185 ustuqtop5 24189 prjcrv0 42623 brtrclfv2 43718 aacllem 49632 |
| Copyright terms: Public domain | W3C validator |