| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpima2 | Structured version Visualization version GIF version | ||
| Description: Direct image by a Cartesian product (case of nonempty intersection with the domain). (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| Ref | Expression |
|---|---|
| xpima2 | ⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpima 6124 | . 2 ⊢ ((𝐴 × 𝐵) “ 𝐶) = if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) | |
| 2 | ifnefalse 4482 | . 2 ⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) = 𝐵) | |
| 3 | 1, 2 | eqtrid 2778 | 1 ⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 ∩ cin 3896 ∅c0 4278 ifcif 4470 × cxp 5609 “ cima 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 |
| This theorem is referenced by: xpimasn 6127 ustuqtop1 24151 ustuqtop5 24155 prjcrv0 42666 brtrclfv2 43760 aacllem 49833 |
| Copyright terms: Public domain | W3C validator |