MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpima2 Structured version   Visualization version   GIF version

Theorem xpima2 6122
Description: Direct image by a Cartesian product (case of nonempty intersection with the domain). (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima2 ((𝐴𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)

Proof of Theorem xpima2
StepHypRef Expression
1 xpima 6120 . 2 ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)
2 ifnefalse 4485 . 2 ((𝐴𝐶) ≠ ∅ → if((𝐴𝐶) = ∅, ∅, 𝐵) = 𝐵)
31, 2eqtrid 2788 1 ((𝐴𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2940  cin 3897  c0 4269  ifcif 4473   × cxp 5618  cima 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-xp 5626  df-rel 5627  df-cnv 5628  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633
This theorem is referenced by:  xpimasn  6123  ustuqtop1  23499  ustuqtop5  23503  prjcrv0  40732  brtrclfv2  41656  aacllem  46856
  Copyright terms: Public domain W3C validator