Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpima2 | Structured version Visualization version GIF version |
Description: Direct image by a Cartesian product (case of nonempty intersection with the domain). (Contributed by Thierry Arnoux, 16-Dec-2017.) |
Ref | Expression |
---|---|
xpima2 | ⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpima 6120 | . 2 ⊢ ((𝐴 × 𝐵) “ 𝐶) = if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) | |
2 | ifnefalse 4485 | . 2 ⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) = 𝐵) | |
3 | 1, 2 | eqtrid 2788 | 1 ⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ≠ wne 2940 ∩ cin 3897 ∅c0 4269 ifcif 4473 × cxp 5618 “ cima 5623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-xp 5626 df-rel 5627 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 |
This theorem is referenced by: xpimasn 6123 ustuqtop1 23499 ustuqtop5 23503 prjcrv0 40732 brtrclfv2 41656 aacllem 46856 |
Copyright terms: Public domain | W3C validator |