Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnndvlem1 Structured version   Visualization version   GIF version

Theorem cnndvlem1 32503
Description: Lemma for cnndv 32505. (Contributed by Asger C. Ipsen, 25-Aug-2021.)
Hypotheses
Ref Expression
cnndvlem1.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
cnndvlem1.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦)))))
cnndvlem1.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
Assertion
Ref Expression
cnndvlem1 (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅)
Distinct variable groups:   𝑖,𝐹,𝑤   𝑇,𝑛,𝑦   𝑖,𝑛,𝑦,𝑤   𝑥,𝑖,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem cnndvlem1
StepHypRef Expression
1 cnndvlem1.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 cnndvlem1.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦)))))
3 cnndvlem1.w . . . 4 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
4 3nn 11171 . . . . 5 3 ∈ ℕ
54a1i 11 . . . 4 (⊤ → 3 ∈ ℕ)
6 neg1rr 11110 . . . . . . . . 9 -1 ∈ ℝ
76rexri 10082 . . . . . . . 8 -1 ∈ ℝ*
8 1re 10024 . . . . . . . . 9 1 ∈ ℝ
98rexri 10082 . . . . . . . 8 1 ∈ ℝ*
10 halfre 11231 . . . . . . . . 9 (1 / 2) ∈ ℝ
1110rexri 10082 . . . . . . . 8 (1 / 2) ∈ ℝ*
127, 9, 113pm3.2i 1237 . . . . . . 7 (-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*)
13 neg1lt0 11112 . . . . . . . . . 10 -1 < 0
14 halfgt0 11233 . . . . . . . . . 10 0 < (1 / 2)
1513, 14pm3.2i 471 . . . . . . . . 9 (-1 < 0 ∧ 0 < (1 / 2))
16 0re 10025 . . . . . . . . . 10 0 ∈ ℝ
176, 16, 10lttri 10148 . . . . . . . . 9 ((-1 < 0 ∧ 0 < (1 / 2)) → -1 < (1 / 2))
1815, 17ax-mp 5 . . . . . . . 8 -1 < (1 / 2)
19 halflt1 11235 . . . . . . . 8 (1 / 2) < 1
2018, 19pm3.2i 471 . . . . . . 7 (-1 < (1 / 2) ∧ (1 / 2) < 1)
2112, 20pm3.2i 471 . . . . . 6 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1))
22 elioo3g 12189 . . . . . 6 ((1 / 2) ∈ (-1(,)1) ↔ ((-1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (-1 < (1 / 2) ∧ (1 / 2) < 1)))
2321, 22mpbir 221 . . . . 5 (1 / 2) ∈ (-1(,)1)
2423a1i 11 . . . 4 (⊤ → (1 / 2) ∈ (-1(,)1))
251, 2, 3, 5, 24knoppcn2 32502 . . 3 (⊤ → 𝑊 ∈ (ℝ–cn→ℝ))
2625trud 1491 . 2 𝑊 ∈ (ℝ–cn→ℝ)
27 2cn 11076 . . . . . . . . 9 2 ∈ ℂ
2827mulid2i 10028 . . . . . . . 8 (1 · 2) = 2
29 2lt3 11180 . . . . . . . 8 2 < 3
3028, 29eqbrtri 4665 . . . . . . 7 (1 · 2) < 3
31 2pos 11097 . . . . . . . 8 0 < 2
324nnrei 11014 . . . . . . . . 9 3 ∈ ℝ
33 2re 11075 . . . . . . . . 9 2 ∈ ℝ
348, 32, 33ltmuldivi 10929 . . . . . . . 8 (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
3531, 34ax-mp 5 . . . . . . 7 ((1 · 2) < 3 ↔ 1 < (3 / 2))
3630, 35mpbi 220 . . . . . 6 1 < (3 / 2)
3716, 10, 14ltleii 10145 . . . . . . . . 9 0 ≤ (1 / 2)
3810absidi 14098 . . . . . . . . 9 (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2))
3937, 38ax-mp 5 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
4039oveq2i 6646 . . . . . . 7 (3 · (abs‘(1 / 2))) = (3 · (1 / 2))
414nncni 11015 . . . . . . . . 9 3 ∈ ℂ
42 2ne0 11098 . . . . . . . . 9 2 ≠ 0
4341, 27, 42divreci 10755 . . . . . . . 8 (3 / 2) = (3 · (1 / 2))
4443eqcomi 2629 . . . . . . 7 (3 · (1 / 2)) = (3 / 2)
4540, 44eqtri 2642 . . . . . 6 (3 · (abs‘(1 / 2))) = (3 / 2)
4636, 45breqtrri 4671 . . . . 5 1 < (3 · (abs‘(1 / 2)))
4746a1i 11 . . . 4 (⊤ → 1 < (3 · (abs‘(1 / 2))))
481, 2, 3, 24, 5, 47knoppndv 32500 . . 3 (⊤ → dom (ℝ D 𝑊) = ∅)
4948trud 1491 . 2 dom (ℝ D 𝑊) = ∅
5026, 49pm3.2i 471 1 (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1036   = wceq 1481  wtru 1482  wcel 1988  c0 3907   class class class wbr 4644  cmpt 4720  dom cdm 5104  cfv 5876  (class class class)co 6635  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926  *cxr 10058   < clt 10059  cle 10060  cmin 10251  -cneg 10252   / cdiv 10669  cn 11005  2c2 11055  3c3 11056  0cn0 11277  (,)cioo 12160  cfl 12574  cexp 12843  abscabs 13955  Σcsu 14397  cnccncf 22660   D cdv 23608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-sum 14398  df-dvds 14965  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-ntr 20805  df-cn 21012  df-cnp 21013  df-tx 21346  df-hmeo 21539  df-xms 22106  df-ms 22107  df-tms 22108  df-cncf 22662  df-limc 23611  df-dv 23612  df-ulm 24112
This theorem is referenced by:  cnndvlem2  32504
  Copyright terms: Public domain W3C validator