MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf Structured version   Visualization version   GIF version

Theorem ismbf 24229
Description: The predicate "𝐹 is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl 24127. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbf (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem ismbf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mbfdm 24227 . . 3 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
2 fdm 6522 . . . 4 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
32eleq1d 2897 . . 3 (𝐹:𝐴⟶ℝ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol))
41, 3syl5ib 246 . 2 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn → 𝐴 ∈ dom vol))
5 ioomax 12812 . . . . 5 (-∞(,)+∞) = ℝ
6 ioorebas 12840 . . . . 5 (-∞(,)+∞) ∈ ran (,)
75, 6eqeltrri 2910 . . . 4 ℝ ∈ ran (,)
8 imaeq2 5925 . . . . . 6 (𝑥 = ℝ → (𝐹𝑥) = (𝐹 “ ℝ))
98eleq1d 2897 . . . . 5 (𝑥 = ℝ → ((𝐹𝑥) ∈ dom vol ↔ (𝐹 “ ℝ) ∈ dom vol))
109rspcv 3618 . . . 4 (ℝ ∈ ran (,) → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol → (𝐹 “ ℝ) ∈ dom vol))
117, 10ax-mp 5 . . 3 (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol → (𝐹 “ ℝ) ∈ dom vol)
12 fimacnv 6839 . . . 4 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
1312eleq1d 2897 . . 3 (𝐹:𝐴⟶ℝ → ((𝐹 “ ℝ) ∈ dom vol ↔ 𝐴 ∈ dom vol))
1411, 13syl5ib 246 . 2 (𝐹:𝐴⟶ℝ → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol → 𝐴 ∈ dom vol))
15 ffvelrn 6849 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℝ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1615adantlr 713 . . . . . . . . . . . . 13 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1716rered 14583 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (ℜ‘(𝐹𝑥)) = (𝐹𝑥))
1817mpteq2dva 5161 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) = (𝑥𝐴 ↦ (𝐹𝑥)))
1916recnd 10669 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
20 simpl 485 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹:𝐴⟶ℝ)
2120feqmptd 6733 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
22 ref 14471 . . . . . . . . . . . . . 14 ℜ:ℂ⟶ℝ
2322a1i 11 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℜ:ℂ⟶ℝ)
2423feqmptd 6733 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦)))
25 fveq2 6670 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (ℜ‘𝑦) = (ℜ‘(𝐹𝑥)))
2619, 21, 24, 25fmptco 6891 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℜ ∘ 𝐹) = (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))))
2718, 26, 213eqtr4rd 2867 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 = (ℜ ∘ 𝐹))
2827cnveqd 5746 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 = (ℜ ∘ 𝐹))
2928imaeq1d 5928 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝐹𝑥) = ((ℜ ∘ 𝐹) “ 𝑥))
3029eleq1d 2897 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((𝐹𝑥) ∈ dom vol ↔ ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
31 imf 14472 . . . . . . . . . . . . . . . 16 ℑ:ℂ⟶ℝ
3231a1i 11 . . . . . . . . . . . . . . 15 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℑ:ℂ⟶ℝ)
3332feqmptd 6733 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦)))
34 fveq2 6670 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑥) → (ℑ‘𝑦) = (ℑ‘(𝐹𝑥)))
3519, 21, 33, 34fmptco 6891 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))))
3616reim0d 14584 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (ℑ‘(𝐹𝑥)) = 0)
3736mpteq2dva 5161 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) = (𝑥𝐴 ↦ 0))
3835, 37eqtrd 2856 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝑥𝐴 ↦ 0))
39 fconstmpt 5614 . . . . . . . . . . . 12 (𝐴 × {0}) = (𝑥𝐴 ↦ 0)
4038, 39syl6eqr 2874 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝐴 × {0}))
4140cnveqd 5746 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝐴 × {0}))
4241imaeq1d 5928 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) “ 𝑥) = ((𝐴 × {0}) “ 𝑥))
43 simpr 487 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐴 ∈ dom vol)
44 0re 10643 . . . . . . . . . 10 0 ∈ ℝ
45 mbfconstlem 24228 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 0 ∈ ℝ) → ((𝐴 × {0}) “ 𝑥) ∈ dom vol)
4643, 44, 45sylancl 588 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((𝐴 × {0}) “ 𝑥) ∈ dom vol)
4742, 46eqeltrd 2913 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)
4847biantrud 534 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ↔ (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
4930, 48bitrd 281 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((𝐹𝑥) ∈ dom vol ↔ (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
5049ralbidv 3197 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol ↔ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
51 ax-resscn 10594 . . . . . . . 8 ℝ ⊆ ℂ
52 fss 6527 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
5351, 52mpan2 689 . . . . . . 7 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
54 mblss 24132 . . . . . . 7 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
55 cnex 10618 . . . . . . . 8 ℂ ∈ V
56 reex 10628 . . . . . . . 8 ℝ ∈ V
57 elpm2r 8424 . . . . . . . 8 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
5855, 56, 57mpanl12 700 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
5953, 54, 58syl2an 597 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ ↑pm ℝ))
6059biantrurd 535 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))))
6150, 60bitrd 281 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))))
62 ismbf1 24225 . . . 4 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
6361, 62syl6rbbr 292 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
6463ex 415 . 2 (𝐹:𝐴⟶ℝ → (𝐴 ∈ dom vol → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)))
654, 14, 64pm5.21ndd 383 1 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  wss 3936  {csn 4567  cmpt 5146   × cxp 5553  ccnv 5554  dom cdm 5555  ran crn 5556  cima 5558  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  pm cpm 8407  cc 10535  cr 10536  0cc0 10537  +∞cpnf 10672  -∞cmnf 10673  (,)cioo 12739  cre 14456  cim 14457  volcvol 24064  MblFncmbf 24215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xadd 12509  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-xmet 20538  df-met 20539  df-ovol 24065  df-vol 24066  df-mbf 24220
This theorem is referenced by:  ismbfcn  24230  mbfima  24231  mbfid  24236  ismbfd  24240  mbfeqalem2  24243  mbfres2  24246  mbfimaopnlem  24256  i1fd  24282  elmbfmvol2  31525  cnambfre  34955
  Copyright terms: Public domain W3C validator