MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf Structured version   Visualization version   GIF version

Theorem ismbf 23117
Description: The predicate "𝐹 is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl 23015. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbf (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem ismbf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mbfdm 23115 . . 3 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
2 fdm 5947 . . . 4 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
32eleq1d 2668 . . 3 (𝐹:𝐴⟶ℝ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol))
41, 3syl5ib 232 . 2 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn → 𝐴 ∈ dom vol))
5 ioomax 12072 . . . . 5 (-∞(,)+∞) = ℝ
6 ioorebas 12099 . . . . 5 (-∞(,)+∞) ∈ ran (,)
75, 6eqeltrri 2681 . . . 4 ℝ ∈ ran (,)
8 imaeq2 5365 . . . . . 6 (𝑥 = ℝ → (𝐹𝑥) = (𝐹 “ ℝ))
98eleq1d 2668 . . . . 5 (𝑥 = ℝ → ((𝐹𝑥) ∈ dom vol ↔ (𝐹 “ ℝ) ∈ dom vol))
109rspcv 3274 . . . 4 (ℝ ∈ ran (,) → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol → (𝐹 “ ℝ) ∈ dom vol))
117, 10ax-mp 5 . . 3 (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol → (𝐹 “ ℝ) ∈ dom vol)
12 fimacnv 6237 . . . 4 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
1312eleq1d 2668 . . 3 (𝐹:𝐴⟶ℝ → ((𝐹 “ ℝ) ∈ dom vol ↔ 𝐴 ∈ dom vol))
1411, 13syl5ib 232 . 2 (𝐹:𝐴⟶ℝ → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol → 𝐴 ∈ dom vol))
15 ffvelrn 6247 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℝ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1615adantlr 746 . . . . . . . . . . . . 13 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1716rered 13755 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (ℜ‘(𝐹𝑥)) = (𝐹𝑥))
1817mpteq2dva 4663 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) = (𝑥𝐴 ↦ (𝐹𝑥)))
1916recnd 9921 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
20 simpl 471 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹:𝐴⟶ℝ)
2120feqmptd 6141 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
22 ref 13643 . . . . . . . . . . . . . 14 ℜ:ℂ⟶ℝ
2322a1i 11 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℜ:ℂ⟶ℝ)
2423feqmptd 6141 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦)))
25 fveq2 6085 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (ℜ‘𝑦) = (ℜ‘(𝐹𝑥)))
2619, 21, 24, 25fmptco 6285 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℜ ∘ 𝐹) = (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))))
2718, 26, 213eqtr4rd 2651 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 = (ℜ ∘ 𝐹))
2827cnveqd 5205 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 = (ℜ ∘ 𝐹))
2928imaeq1d 5368 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝐹𝑥) = ((ℜ ∘ 𝐹) “ 𝑥))
3029eleq1d 2668 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((𝐹𝑥) ∈ dom vol ↔ ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
31 imf 13644 . . . . . . . . . . . . . . . 16 ℑ:ℂ⟶ℝ
3231a1i 11 . . . . . . . . . . . . . . 15 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℑ:ℂ⟶ℝ)
3332feqmptd 6141 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦)))
34 fveq2 6085 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑥) → (ℑ‘𝑦) = (ℑ‘(𝐹𝑥)))
3519, 21, 33, 34fmptco 6285 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))))
3616reim0d 13756 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (ℑ‘(𝐹𝑥)) = 0)
3736mpteq2dva 4663 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) = (𝑥𝐴 ↦ 0))
3835, 37eqtrd 2640 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝑥𝐴 ↦ 0))
39 fconstmpt 5072 . . . . . . . . . . . 12 (𝐴 × {0}) = (𝑥𝐴 ↦ 0)
4038, 39syl6eqr 2658 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝐴 × {0}))
4140cnveqd 5205 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝐴 × {0}))
4241imaeq1d 5368 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) “ 𝑥) = ((𝐴 × {0}) “ 𝑥))
43 simpr 475 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐴 ∈ dom vol)
44 0re 9893 . . . . . . . . . 10 0 ∈ ℝ
45 mbfconstlem 23116 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 0 ∈ ℝ) → ((𝐴 × {0}) “ 𝑥) ∈ dom vol)
4643, 44, 45sylancl 692 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((𝐴 × {0}) “ 𝑥) ∈ dom vol)
4742, 46eqeltrd 2684 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)
4847biantrud 526 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ↔ (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
4930, 48bitrd 266 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((𝐹𝑥) ∈ dom vol ↔ (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
5049ralbidv 2965 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol ↔ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
51 ax-resscn 9846 . . . . . . . 8 ℝ ⊆ ℂ
52 fss 5952 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
5351, 52mpan2 702 . . . . . . 7 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
54 mblss 23020 . . . . . . 7 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
55 cnex 9870 . . . . . . . 8 ℂ ∈ V
56 reex 9880 . . . . . . . 8 ℝ ∈ V
57 elpm2r 7735 . . . . . . . 8 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
5855, 56, 57mpanl12 713 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
5953, 54, 58syl2an 492 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ ↑pm ℝ))
6059biantrurd 527 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))))
6150, 60bitrd 266 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))))
62 ismbf1 23113 . . . 4 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
6361, 62syl6rbbr 277 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
6463ex 448 . 2 (𝐹:𝐴⟶ℝ → (𝐴 ∈ dom vol → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)))
654, 14, 64pm5.21ndd 367 1 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2892  Vcvv 3169  wss 3536  {csn 4121  cmpt 4634   × cxp 5023  ccnv 5024  dom cdm 5025  ran crn 5026  cima 5028  ccom 5029  wf 5783  cfv 5787  (class class class)co 6524  pm cpm 7719  cc 9787  cr 9788  0cc0 9789  +∞cpnf 9924  -∞cmnf 9925  (,)cioo 11999  cre 13628  cim 13629  volcvol 22953  MblFncmbf 23103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-2o 7422  df-oadd 7425  df-er 7603  df-map 7720  df-pm 7721  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-sup 8205  df-inf 8206  df-oi 8272  df-card 8622  df-cda 8847  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-n0 11137  df-z 11208  df-uz 11517  df-q 11618  df-rp 11662  df-xadd 11776  df-ioo 12003  df-ico 12005  df-icc 12006  df-fz 12150  df-fzo 12287  df-fl 12407  df-seq 12616  df-exp 12675  df-hash 12932  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-clim 14010  df-sum 14208  df-xmet 19503  df-met 19504  df-ovol 22954  df-vol 22955  df-mbf 23108
This theorem is referenced by:  ismbfcn  23118  mbfima  23119  mbfid  23123  ismbfd  23127  mbfeqalem  23129  mbfres2  23132  mbfimaopnlem  23142  i1fd  23168  elmbfmvol2  29459  cnambfre  32428  mbf0  38650
  Copyright terms: Public domain W3C validator