Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bastop1 | Unicode version |
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom " " to express " is a basis for topology " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
bastop1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgss 12857 | . . . . 5 | |
2 | tgtop 12862 | . . . . . 6 | |
3 | 2 | adantr 274 | . . . . 5 |
4 | 1, 3 | sseqtrd 3185 | . . . 4 |
5 | eqss 3162 | . . . . 5 | |
6 | 5 | baib 914 | . . . 4 |
7 | 4, 6 | syl 14 | . . 3 |
8 | dfss3 3137 | . . 3 | |
9 | 7, 8 | bitrdi 195 | . 2 |
10 | ssexg 4128 | . . . . 5 | |
11 | 10 | ancoms 266 | . . . 4 |
12 | eltg3 12851 | . . . 4 | |
13 | 11, 12 | syl 14 | . . 3 |
14 | 13 | ralbidv 2470 | . 2 |
15 | 9, 14 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wral 2448 cvv 2730 wss 3121 cuni 3796 cfv 5198 ctg 12594 ctop 12789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-topgen 12600 df-top 12790 |
This theorem is referenced by: bastop2 12878 |
Copyright terms: Public domain | W3C validator |