ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bastop1 Unicode version

Theorem bastop1 11950
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom " ( topGen `  B
)  =  J " to express " B is a basis for topology  J " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
bastop1  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) )
Distinct variable groups:    x, y, B   
x, J, y

Proof of Theorem bastop1
StepHypRef Expression
1 tgss 11930 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( topGen `  B )  C_  ( topGen `  J )
)
2 tgtop 11935 . . . . . 6  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
32adantr 271 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( topGen `  J )  =  J )
41, 3sseqtrd 3077 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( topGen `  B )  C_  J )
5 eqss 3054 . . . . 5  |-  ( (
topGen `  B )  =  J  <->  ( ( topGen `  B )  C_  J  /\  J  C_  ( topGen `  B ) ) )
65baib 869 . . . 4  |-  ( (
topGen `  B )  C_  J  ->  ( ( topGen `  B )  =  J  <-> 
J  C_  ( topGen `  B ) ) )
74, 6syl 14 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  J  C_  ( topGen `
 B ) ) )
8 dfss3 3029 . . 3  |-  ( J 
C_  ( topGen `  B
)  <->  A. x  e.  J  x  e.  ( topGen `  B ) )
97, 8syl6bb 195 . 2  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  A. x  e.  J  x  e.  ( topGen `  B )
) )
10 ssexg 3999 . . . . 5  |-  ( ( B  C_  J  /\  J  e.  Top )  ->  B  e.  _V )
1110ancoms 265 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  J )  ->  B  e.  _V )
12 eltg3 11924 . . . 4  |-  ( B  e.  _V  ->  (
x  e.  ( topGen `  B )  <->  E. y
( y  C_  B  /\  x  =  U. y ) ) )
1311, 12syl 14 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( x  e.  (
topGen `  B )  <->  E. y
( y  C_  B  /\  x  =  U. y ) ) )
1413ralbidv 2391 . 2  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( A. x  e.  J  x  e.  (
topGen `  B )  <->  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) )
159, 14bitrd 187 1  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1296   E.wex 1433    e. wcel 1445   A.wral 2370   _Vcvv 2633    C_ wss 3013   U.cuni 3675   ` cfv 5049   topGenctg 11834   Topctop 11863
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-sbc 2855  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-topgen 11840  df-top 11864
This theorem is referenced by:  bastop2  11951
  Copyright terms: Public domain W3C validator