ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bastop1 Unicode version

Theorem bastop1 13154
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom " ( topGen `  B
)  =  J " to express " B is a basis for topology  J " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
bastop1  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) )
Distinct variable groups:    x, y, B   
x, J, y

Proof of Theorem bastop1
StepHypRef Expression
1 tgss 13134 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( topGen `  B )  C_  ( topGen `  J )
)
2 tgtop 13139 . . . . . 6  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
32adantr 276 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( topGen `  J )  =  J )
41, 3sseqtrd 3191 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( topGen `  B )  C_  J )
5 eqss 3168 . . . . 5  |-  ( (
topGen `  B )  =  J  <->  ( ( topGen `  B )  C_  J  /\  J  C_  ( topGen `  B ) ) )
65baib 919 . . . 4  |-  ( (
topGen `  B )  C_  J  ->  ( ( topGen `  B )  =  J  <-> 
J  C_  ( topGen `  B ) ) )
74, 6syl 14 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  J  C_  ( topGen `
 B ) ) )
8 dfss3 3143 . . 3  |-  ( J 
C_  ( topGen `  B
)  <->  A. x  e.  J  x  e.  ( topGen `  B ) )
97, 8bitrdi 196 . 2  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  A. x  e.  J  x  e.  ( topGen `  B )
) )
10 ssexg 4137 . . . . 5  |-  ( ( B  C_  J  /\  J  e.  Top )  ->  B  e.  _V )
1110ancoms 268 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  J )  ->  B  e.  _V )
12 eltg3 13128 . . . 4  |-  ( B  e.  _V  ->  (
x  e.  ( topGen `  B )  <->  E. y
( y  C_  B  /\  x  =  U. y ) ) )
1311, 12syl 14 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( x  e.  (
topGen `  B )  <->  E. y
( y  C_  B  /\  x  =  U. y ) ) )
1413ralbidv 2475 . 2  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( A. x  e.  J  x  e.  (
topGen `  B )  <->  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) )
159, 14bitrd 188 1  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1490    e. wcel 2146   A.wral 2453   _Vcvv 2735    C_ wss 3127   U.cuni 3805   ` cfv 5208   topGenctg 12625   Topctop 13066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-topgen 12631  df-top 13067
This theorem is referenced by:  bastop2  13155
  Copyright terms: Public domain W3C validator