Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bastop1 | Unicode version |
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom " " to express " is a basis for topology " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
bastop1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgss 13134 | . . . . 5 | |
2 | tgtop 13139 | . . . . . 6 | |
3 | 2 | adantr 276 | . . . . 5 |
4 | 1, 3 | sseqtrd 3191 | . . . 4 |
5 | eqss 3168 | . . . . 5 | |
6 | 5 | baib 919 | . . . 4 |
7 | 4, 6 | syl 14 | . . 3 |
8 | dfss3 3143 | . . 3 | |
9 | 7, 8 | bitrdi 196 | . 2 |
10 | ssexg 4137 | . . . . 5 | |
11 | 10 | ancoms 268 | . . . 4 |
12 | eltg3 13128 | . . . 4 | |
13 | 11, 12 | syl 14 | . . 3 |
14 | 13 | ralbidv 2475 | . 2 |
15 | 9, 14 | bitrd 188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wex 1490 wcel 2146 wral 2453 cvv 2735 wss 3127 cuni 3805 cfv 5208 ctg 12625 ctop 13066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-topgen 12631 df-top 13067 |
This theorem is referenced by: bastop2 13155 |
Copyright terms: Public domain | W3C validator |