ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bastop1 Unicode version

Theorem bastop1 14757
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom " ( topGen `  B
)  =  J " to express " B is a basis for topology  J " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
bastop1  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) )
Distinct variable groups:    x, y, B   
x, J, y

Proof of Theorem bastop1
StepHypRef Expression
1 tgss 14737 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( topGen `  B )  C_  ( topGen `  J )
)
2 tgtop 14742 . . . . . 6  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
32adantr 276 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( topGen `  J )  =  J )
41, 3sseqtrd 3262 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( topGen `  B )  C_  J )
5 eqss 3239 . . . . 5  |-  ( (
topGen `  B )  =  J  <->  ( ( topGen `  B )  C_  J  /\  J  C_  ( topGen `  B ) ) )
65baib 924 . . . 4  |-  ( (
topGen `  B )  C_  J  ->  ( ( topGen `  B )  =  J  <-> 
J  C_  ( topGen `  B ) ) )
74, 6syl 14 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  J  C_  ( topGen `
 B ) ) )
8 dfss3 3213 . . 3  |-  ( J 
C_  ( topGen `  B
)  <->  A. x  e.  J  x  e.  ( topGen `  B ) )
97, 8bitrdi 196 . 2  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  A. x  e.  J  x  e.  ( topGen `  B )
) )
10 ssexg 4223 . . . . 5  |-  ( ( B  C_  J  /\  J  e.  Top )  ->  B  e.  _V )
1110ancoms 268 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  J )  ->  B  e.  _V )
12 eltg3 14731 . . . 4  |-  ( B  e.  _V  ->  (
x  e.  ( topGen `  B )  <->  E. y
( y  C_  B  /\  x  =  U. y ) ) )
1311, 12syl 14 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( x  e.  (
topGen `  B )  <->  E. y
( y  C_  B  /\  x  =  U. y ) ) )
1413ralbidv 2530 . 2  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( A. x  e.  J  x  e.  (
topGen `  B )  <->  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) )
159, 14bitrd 188 1  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   U.cuni 3888   ` cfv 5318   topGenctg 13287   Topctop 14671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-topgen 13293  df-top 14672
This theorem is referenced by:  bastop2  14758
  Copyright terms: Public domain W3C validator