Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bastop1 | Unicode version |
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom " " to express " is a basis for topology " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
bastop1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgss 12703 | . . . . 5 | |
2 | tgtop 12708 | . . . . . 6 | |
3 | 2 | adantr 274 | . . . . 5 |
4 | 1, 3 | sseqtrd 3180 | . . . 4 |
5 | eqss 3157 | . . . . 5 | |
6 | 5 | baib 909 | . . . 4 |
7 | 4, 6 | syl 14 | . . 3 |
8 | dfss3 3132 | . . 3 | |
9 | 7, 8 | bitrdi 195 | . 2 |
10 | ssexg 4121 | . . . . 5 | |
11 | 10 | ancoms 266 | . . . 4 |
12 | eltg3 12697 | . . . 4 | |
13 | 11, 12 | syl 14 | . . 3 |
14 | 13 | ralbidv 2466 | . 2 |
15 | 9, 14 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wral 2444 cvv 2726 wss 3116 cuni 3789 cfv 5188 ctg 12571 ctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topgen 12577 df-top 12636 |
This theorem is referenced by: bastop2 12724 |
Copyright terms: Public domain | W3C validator |