ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgss3 Unicode version

Theorem tgss3 12872
Description: A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgss3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B
)  C_  ( topGen `  C )  <->  B  C_  ( topGen `
 C ) ) )

Proof of Theorem tgss3
StepHypRef Expression
1 bastg 12855 . . . 4  |-  ( B  e.  V  ->  B  C_  ( topGen `  B )
)
21adantr 274 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  B  C_  ( topGen `  B ) )
3 sstr2 3154 . . 3  |-  ( B 
C_  ( topGen `  B
)  ->  ( ( topGen `
 B )  C_  ( topGen `  C )  ->  B  C_  ( topGen `  C ) ) )
42, 3syl 14 . 2  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B
)  C_  ( topGen `  C )  ->  B  C_  ( topGen `  C )
) )
5 tgvalex 12844 . . . . . 6  |-  ( C  e.  W  ->  ( topGen `
 C )  e. 
_V )
6 tgss 12857 . . . . . 6  |-  ( ( ( topGen `  C )  e.  _V  /\  B  C_  ( topGen `  C )
)  ->  ( topGen `  B )  C_  ( topGen `
 ( topGen `  C
) ) )
75, 6sylan 281 . . . . 5  |-  ( ( C  e.  W  /\  B  C_  ( topGen `  C
) )  ->  ( topGen `
 B )  C_  ( topGen `  ( topGen `  C ) ) )
87ex 114 . . . 4  |-  ( C  e.  W  ->  ( B  C_  ( topGen `  C
)  ->  ( topGen `  B )  C_  ( topGen `
 ( topGen `  C
) ) ) )
98adantl 275 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( B  C_  ( topGen `
 C )  -> 
( topGen `  B )  C_  ( topGen `  ( topGen `  C ) ) ) )
10 tgidm 12868 . . . . 5  |-  ( C  e.  W  ->  ( topGen `
 ( topGen `  C
) )  =  (
topGen `  C ) )
1110adantl 275 . . . 4  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( topGen `  ( topGen `  C ) )  =  ( topGen `  C )
)
1211sseq2d 3177 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B
)  C_  ( topGen `  ( topGen `  C )
)  <->  ( topGen `  B
)  C_  ( topGen `  C ) ) )
139, 12sylibd 148 . 2  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( B  C_  ( topGen `
 C )  -> 
( topGen `  B )  C_  ( topGen `  C )
) )
144, 13impbid 128 1  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B
)  C_  ( topGen `  C )  <->  B  C_  ( topGen `
 C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   ` cfv 5198   topGenctg 12594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-topgen 12600
This theorem is referenced by:  tgss2  12873  2basgeng  12876  xmettxlem  13303  xmettx  13304
  Copyright terms: Public domain W3C validator