| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2basgeng | GIF version | ||
| Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.) |
| Ref | Expression |
|---|---|
| 2basgeng | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgvalex 13262 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) | |
| 2 | 1 | 3ad2ant1 1023 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ∈ V) |
| 3 | simp3 1004 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ⊆ (topGen‘𝐵)) | |
| 4 | 2, 3 | ssexd 4203 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ∈ V) |
| 5 | simp2 1003 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ⊆ 𝐶) | |
| 6 | tgss 14702 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) | |
| 7 | 4, 5, 6 | syl2anc 411 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
| 8 | simp1 1002 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ∈ 𝑉) | |
| 9 | tgss3 14717 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ 𝑉) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵))) | |
| 10 | 4, 8, 9 | syl2anc 411 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵))) |
| 11 | 3, 10 | mpbird 167 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐶) ⊆ (topGen‘𝐵)) |
| 12 | 7, 11 | eqssd 3221 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 ‘cfv 5294 topGenctg 13253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-topgen 13259 |
| This theorem is referenced by: txbasval 14906 tgioo 15193 tgqioo 15194 |
| Copyright terms: Public domain | W3C validator |