ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2basgeng GIF version

Theorem 2basgeng 14402
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
2basgeng ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))

Proof of Theorem 2basgeng
StepHypRef Expression
1 tgvalex 12965 . . . . 5 (𝐵𝑉 → (topGen‘𝐵) ∈ V)
213ad2ant1 1020 . . . 4 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ∈ V)
3 simp3 1001 . . . 4 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ⊆ (topGen‘𝐵))
42, 3ssexd 4174 . . 3 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ∈ V)
5 simp2 1000 . . 3 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐵𝐶)
6 tgss 14383 . . 3 ((𝐶 ∈ V ∧ 𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
74, 5, 6syl2anc 411 . 2 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
8 simp1 999 . . . 4 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐵𝑉)
9 tgss3 14398 . . . 4 ((𝐶 ∈ V ∧ 𝐵𝑉) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵)))
104, 8, 9syl2anc 411 . . 3 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵)))
113, 10mpbird 167 . 2 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐶) ⊆ (topGen‘𝐵))
127, 11eqssd 3201 1 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  cfv 5259  topGenctg 12956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-topgen 12962
This theorem is referenced by:  txbasval  14587  tgioo  14874  tgqioo  14875
  Copyright terms: Public domain W3C validator