ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2basgeng GIF version

Theorem 2basgeng 14764
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
2basgeng ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))

Proof of Theorem 2basgeng
StepHypRef Expression
1 tgvalex 13304 . . . . 5 (𝐵𝑉 → (topGen‘𝐵) ∈ V)
213ad2ant1 1042 . . . 4 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ∈ V)
3 simp3 1023 . . . 4 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ⊆ (topGen‘𝐵))
42, 3ssexd 4224 . . 3 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ∈ V)
5 simp2 1022 . . 3 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐵𝐶)
6 tgss 14745 . . 3 ((𝐶 ∈ V ∧ 𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
74, 5, 6syl2anc 411 . 2 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
8 simp1 1021 . . . 4 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐵𝑉)
9 tgss3 14760 . . . 4 ((𝐶 ∈ V ∧ 𝐵𝑉) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵)))
104, 8, 9syl2anc 411 . . 3 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵)))
113, 10mpbird 167 . 2 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐶) ⊆ (topGen‘𝐵))
127, 11eqssd 3241 1 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  cfv 5318  topGenctg 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-topgen 13301
This theorem is referenced by:  txbasval  14949  tgioo  15236  tgqioo  15237
  Copyright terms: Public domain W3C validator