| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2basgeng | GIF version | ||
| Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.) |
| Ref | Expression |
|---|---|
| 2basgeng | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgvalex 13304 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) | |
| 2 | 1 | 3ad2ant1 1042 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ∈ V) |
| 3 | simp3 1023 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ⊆ (topGen‘𝐵)) | |
| 4 | 2, 3 | ssexd 4224 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ∈ V) |
| 5 | simp2 1022 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ⊆ 𝐶) | |
| 6 | tgss 14745 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) | |
| 7 | 4, 5, 6 | syl2anc 411 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
| 8 | simp1 1021 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ∈ 𝑉) | |
| 9 | tgss3 14760 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ 𝑉) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵))) | |
| 10 | 4, 8, 9 | syl2anc 411 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵))) |
| 11 | 3, 10 | mpbird 167 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐶) ⊆ (topGen‘𝐵)) |
| 12 | 7, 11 | eqssd 3241 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ‘cfv 5318 topGenctg 13295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-topgen 13301 |
| This theorem is referenced by: txbasval 14949 tgioo 15236 tgqioo 15237 |
| Copyright terms: Public domain | W3C validator |