Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  2basgeng GIF version

Theorem 2basgeng 12277
 Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
2basgeng ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))

Proof of Theorem 2basgeng
StepHypRef Expression
1 tgvalex 12245 . . . . 5 (𝐵𝑉 → (topGen‘𝐵) ∈ V)
213ad2ant1 1002 . . . 4 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ∈ V)
3 simp3 983 . . . 4 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ⊆ (topGen‘𝐵))
42, 3ssexd 4071 . . 3 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ∈ V)
5 simp2 982 . . 3 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐵𝐶)
6 tgss 12258 . . 3 ((𝐶 ∈ V ∧ 𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
74, 5, 6syl2anc 408 . 2 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
8 simp1 981 . . . 4 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → 𝐵𝑉)
9 tgss3 12273 . . . 4 ((𝐶 ∈ V ∧ 𝐵𝑉) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵)))
104, 8, 9syl2anc 408 . . 3 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵)))
113, 10mpbird 166 . 2 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐶) ⊆ (topGen‘𝐵))
127, 11eqssd 3114 1 ((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  Vcvv 2686   ⊆ wss 3071  ‘cfv 5126  topGenctg 12161 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134  ax-un 4358 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-iun 3818  df-br 3933  df-opab 3993  df-mpt 3994  df-id 4218  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-iota 5091  df-fun 5128  df-fv 5134  df-topgen 12167 This theorem is referenced by:  txbasval  12462  tgioo  12741  tgqioo  12742
 Copyright terms: Public domain W3C validator