ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2nd1st Unicode version

Theorem 2nd1st 6118
Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
Assertion
Ref Expression
2nd1st  |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  <. ( 2nd `  A ) ,  ( 1st `  A
) >. )

Proof of Theorem 2nd1st
StepHypRef Expression
1 1st2nd2 6113 . . . . 5  |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
21sneqd 3569 . . . 4  |-  ( A  e.  ( B  X.  C )  ->  { A }  =  { <. ( 1st `  A ) ,  ( 2nd `  A
) >. } )
32cnveqd 4755 . . 3  |-  ( A  e.  ( B  X.  C )  ->  `' { A }  =  `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. } )
43unieqd 3779 . 2  |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  U. `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. } )
5 1stexg 6105 . . 3  |-  ( A  e.  ( B  X.  C )  ->  ( 1st `  A )  e. 
_V )
6 2ndexg 6106 . . 3  |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e. 
_V )
7 opswapg 5065 . . 3  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  ->  U. `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. }  =  <. ( 2nd `  A
) ,  ( 1st `  A ) >. )
85, 6, 7syl2anc 409 . 2  |-  ( A  e.  ( B  X.  C )  ->  U. `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. }  =  <. ( 2nd `  A
) ,  ( 1st `  A ) >. )
94, 8eqtrd 2187 1  |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  <. ( 2nd `  A ) ,  ( 1st `  A
) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 2125   _Vcvv 2709   {csn 3556   <.cop 3559   U.cuni 3768    X. cxp 4577   `'ccnv 4578   ` cfv 5163   1stc1st 6076   2ndc2nd 6077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fo 5169  df-fv 5171  df-1st 6078  df-2nd 6079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator