ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2nd1st Unicode version

Theorem 2nd1st 6238
Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
Assertion
Ref Expression
2nd1st  |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  <. ( 2nd `  A ) ,  ( 1st `  A
) >. )

Proof of Theorem 2nd1st
StepHypRef Expression
1 1st2nd2 6233 . . . . 5  |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
21sneqd 3635 . . . 4  |-  ( A  e.  ( B  X.  C )  ->  { A }  =  { <. ( 1st `  A ) ,  ( 2nd `  A
) >. } )
32cnveqd 4842 . . 3  |-  ( A  e.  ( B  X.  C )  ->  `' { A }  =  `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. } )
43unieqd 3850 . 2  |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  U. `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. } )
5 1stexg 6225 . . 3  |-  ( A  e.  ( B  X.  C )  ->  ( 1st `  A )  e. 
_V )
6 2ndexg 6226 . . 3  |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e. 
_V )
7 opswapg 5156 . . 3  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  ->  U. `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. }  =  <. ( 2nd `  A
) ,  ( 1st `  A ) >. )
85, 6, 7syl2anc 411 . 2  |-  ( A  e.  ( B  X.  C )  ->  U. `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. }  =  <. ( 2nd `  A
) ,  ( 1st `  A ) >. )
94, 8eqtrd 2229 1  |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  <. ( 2nd `  A ) ,  ( 1st `  A
) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3622   <.cop 3625   U.cuni 3839    X. cxp 4661   `'ccnv 4662   ` cfv 5258   1stc1st 6196   2ndc2nd 6197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-1st 6198  df-2nd 6199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator