ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2nd1st Unicode version

Theorem 2nd1st 6324
Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
Assertion
Ref Expression
2nd1st  |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  <. ( 2nd `  A ) ,  ( 1st `  A
) >. )

Proof of Theorem 2nd1st
StepHypRef Expression
1 1st2nd2 6319 . . . . 5  |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
21sneqd 3679 . . . 4  |-  ( A  e.  ( B  X.  C )  ->  { A }  =  { <. ( 1st `  A ) ,  ( 2nd `  A
) >. } )
32cnveqd 4897 . . 3  |-  ( A  e.  ( B  X.  C )  ->  `' { A }  =  `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. } )
43unieqd 3898 . 2  |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  U. `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. } )
5 1stexg 6311 . . 3  |-  ( A  e.  ( B  X.  C )  ->  ( 1st `  A )  e. 
_V )
6 2ndexg 6312 . . 3  |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e. 
_V )
7 opswapg 5214 . . 3  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  ->  U. `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. }  =  <. ( 2nd `  A
) ,  ( 1st `  A ) >. )
85, 6, 7syl2anc 411 . 2  |-  ( A  e.  ( B  X.  C )  ->  U. `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. }  =  <. ( 2nd `  A
) ,  ( 1st `  A ) >. )
94, 8eqtrd 2262 1  |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  <. ( 2nd `  A ) ,  ( 1st `  A
) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   <.cop 3669   U.cuni 3887    X. cxp 4716   `'ccnv 4717   ` cfv 5317   1stc1st 6282   2ndc2nd 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325  df-1st 6284  df-2nd 6285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator