ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2nd1st Unicode version

Theorem 2nd1st 6279
Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
Assertion
Ref Expression
2nd1st  |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  <. ( 2nd `  A ) ,  ( 1st `  A
) >. )

Proof of Theorem 2nd1st
StepHypRef Expression
1 1st2nd2 6274 . . . . 5  |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
21sneqd 3651 . . . 4  |-  ( A  e.  ( B  X.  C )  ->  { A }  =  { <. ( 1st `  A ) ,  ( 2nd `  A
) >. } )
32cnveqd 4862 . . 3  |-  ( A  e.  ( B  X.  C )  ->  `' { A }  =  `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. } )
43unieqd 3867 . 2  |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  U. `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. } )
5 1stexg 6266 . . 3  |-  ( A  e.  ( B  X.  C )  ->  ( 1st `  A )  e. 
_V )
6 2ndexg 6267 . . 3  |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e. 
_V )
7 opswapg 5178 . . 3  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  ->  U. `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. }  =  <. ( 2nd `  A
) ,  ( 1st `  A ) >. )
85, 6, 7syl2anc 411 . 2  |-  ( A  e.  ( B  X.  C )  ->  U. `' { <. ( 1st `  A
) ,  ( 2nd `  A ) >. }  =  <. ( 2nd `  A
) ,  ( 1st `  A ) >. )
94, 8eqtrd 2239 1  |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  <. ( 2nd `  A ) ,  ( 1st `  A
) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773   {csn 3638   <.cop 3641   U.cuni 3856    X. cxp 4681   `'ccnv 4682   ` cfv 5280   1stc1st 6237   2ndc2nd 6238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fo 5286  df-fv 5288  df-1st 6239  df-2nd 6240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator