![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2nd1st | GIF version |
Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.) |
Ref | Expression |
---|---|
2nd1st | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = ⟨(2nd ‘𝐴), (1st ‘𝐴)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 6176 | . . . . 5 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
2 | 1 | sneqd 3606 | . . . 4 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st ‘𝐴), (2nd ‘𝐴)⟩}) |
3 | 2 | cnveqd 4804 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ◡{𝐴} = ◡{⟨(1st ‘𝐴), (2nd ‘𝐴)⟩}) |
4 | 3 | unieqd 3821 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = ∪ ◡{⟨(1st ‘𝐴), (2nd ‘𝐴)⟩}) |
5 | 1stexg 6168 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ V) | |
6 | 2ndexg 6169 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ V) | |
7 | opswapg 5116 | . . 3 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) → ∪ ◡{⟨(1st ‘𝐴), (2nd ‘𝐴)⟩} = ⟨(2nd ‘𝐴), (1st ‘𝐴)⟩) | |
8 | 5, 6, 7 | syl2anc 411 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{⟨(1st ‘𝐴), (2nd ‘𝐴)⟩} = ⟨(2nd ‘𝐴), (1st ‘𝐴)⟩) |
9 | 4, 8 | eqtrd 2210 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = ⟨(2nd ‘𝐴), (1st ‘𝐴)⟩) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2738 {csn 3593 ⟨cop 3596 ∪ cuni 3810 × cxp 4625 ◡ccnv 4626 ‘cfv 5217 1st c1st 6139 2nd c2nd 6140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fo 5223 df-fv 5225 df-1st 6141 df-2nd 6142 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |