| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2nd1st | GIF version | ||
| Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| 2nd1st | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd2 6233 | . . . . 5 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | 1 | sneqd 3635 | . . . 4 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {〈(1st ‘𝐴), (2nd ‘𝐴)〉}) |
| 3 | 2 | cnveqd 4842 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ◡{𝐴} = ◡{〈(1st ‘𝐴), (2nd ‘𝐴)〉}) |
| 4 | 3 | unieqd 3850 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = ∪ ◡{〈(1st ‘𝐴), (2nd ‘𝐴)〉}) |
| 5 | 1stexg 6225 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ V) | |
| 6 | 2ndexg 6226 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ V) | |
| 7 | opswapg 5156 | . . 3 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) → ∪ ◡{〈(1st ‘𝐴), (2nd ‘𝐴)〉} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) | |
| 8 | 5, 6, 7 | syl2anc 411 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{〈(1st ‘𝐴), (2nd ‘𝐴)〉} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) |
| 9 | 4, 8 | eqtrd 2229 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3622 〈cop 3625 ∪ cuni 3839 × cxp 4661 ◡ccnv 4662 ‘cfv 5258 1st c1st 6196 2nd c2nd 6197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-1st 6198 df-2nd 6199 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |