ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2nd1st GIF version

Theorem 2nd1st 6148
Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
Assertion
Ref Expression
2nd1st (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = ⟨(2nd𝐴), (1st𝐴)⟩)

Proof of Theorem 2nd1st
StepHypRef Expression
1 1st2nd2 6143 . . . . 5 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
21sneqd 3589 . . . 4 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st𝐴), (2nd𝐴)⟩})
32cnveqd 4780 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st𝐴), (2nd𝐴)⟩})
43unieqd 3800 . 2 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st𝐴), (2nd𝐴)⟩})
5 1stexg 6135 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ V)
6 2ndexg 6136 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → (2nd𝐴) ∈ V)
7 opswapg 5090 . . 3 (((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V) → {⟨(1st𝐴), (2nd𝐴)⟩} = ⟨(2nd𝐴), (1st𝐴)⟩)
85, 6, 7syl2anc 409 . 2 (𝐴 ∈ (𝐵 × 𝐶) → {⟨(1st𝐴), (2nd𝐴)⟩} = ⟨(2nd𝐴), (1st𝐴)⟩)
94, 8eqtrd 2198 1 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = ⟨(2nd𝐴), (1st𝐴)⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  Vcvv 2726  {csn 3576  cop 3579   cuni 3789   × cxp 4602  ccnv 4603  cfv 5188  1st c1st 6106  2nd c2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-1st 6108  df-2nd 6109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator