ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2nd1st GIF version

Theorem 2nd1st 6238
Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
Assertion
Ref Expression
2nd1st (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = ⟨(2nd𝐴), (1st𝐴)⟩)

Proof of Theorem 2nd1st
StepHypRef Expression
1 1st2nd2 6233 . . . . 5 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
21sneqd 3635 . . . 4 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st𝐴), (2nd𝐴)⟩})
32cnveqd 4842 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st𝐴), (2nd𝐴)⟩})
43unieqd 3850 . 2 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st𝐴), (2nd𝐴)⟩})
5 1stexg 6225 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ V)
6 2ndexg 6226 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → (2nd𝐴) ∈ V)
7 opswapg 5156 . . 3 (((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V) → {⟨(1st𝐴), (2nd𝐴)⟩} = ⟨(2nd𝐴), (1st𝐴)⟩)
85, 6, 7syl2anc 411 . 2 (𝐴 ∈ (𝐵 × 𝐶) → {⟨(1st𝐴), (2nd𝐴)⟩} = ⟨(2nd𝐴), (1st𝐴)⟩)
94, 8eqtrd 2229 1 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = ⟨(2nd𝐴), (1st𝐴)⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  {csn 3622  cop 3625   cuni 3839   × cxp 4661  ccnv 4662  cfv 5258  1st c1st 6196  2nd c2nd 6197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-1st 6198  df-2nd 6199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator