| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2nd1st | GIF version | ||
| Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| 2nd1st | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd2 6291 | . . . . 5 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | 1 | sneqd 3659 | . . . 4 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {〈(1st ‘𝐴), (2nd ‘𝐴)〉}) |
| 3 | 2 | cnveqd 4875 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ◡{𝐴} = ◡{〈(1st ‘𝐴), (2nd ‘𝐴)〉}) |
| 4 | 3 | unieqd 3878 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = ∪ ◡{〈(1st ‘𝐴), (2nd ‘𝐴)〉}) |
| 5 | 1stexg 6283 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ V) | |
| 6 | 2ndexg 6284 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ V) | |
| 7 | opswapg 5191 | . . 3 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) → ∪ ◡{〈(1st ‘𝐴), (2nd ‘𝐴)〉} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) | |
| 8 | 5, 6, 7 | syl2anc 411 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{〈(1st ‘𝐴), (2nd ‘𝐴)〉} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) |
| 9 | 4, 8 | eqtrd 2242 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 {csn 3646 〈cop 3649 ∪ cuni 3867 × cxp 4694 ◡ccnv 4695 ‘cfv 5294 1st c1st 6254 2nd c2nd 6255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fo 5300 df-fv 5302 df-1st 6256 df-2nd 6257 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |