| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1st2nd2 | Unicode version | ||
| Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| Ref | Expression |
|---|---|
| 1st2nd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 6257 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-iota 5233 df-fun 5274 df-fv 5280 df-1st 6228 df-2nd 6229 |
| This theorem is referenced by: xpopth 6264 eqop 6265 2nd1st 6268 1st2nd 6269 xpmapenlem 6948 opabfi 7037 djuf1olem 7157 exmidapne 7374 dfplpq2 7469 dfmpq2 7470 enqbreq2 7472 enqdc1 7477 preqlu 7587 prop 7590 elnp1st2nd 7591 cauappcvgprlemladd 7773 elreal2 7945 cnref1o 9774 frecuzrdgrrn 10555 frec2uzrdg 10556 frecuzrdgrcl 10557 frecuzrdgsuc 10561 frecuzrdgrclt 10562 frecuzrdgg 10563 frecuzrdgdomlem 10564 frecuzrdgfunlem 10566 frecuzrdgsuctlem 10570 seq3val 10607 seqvalcd 10608 eucalgval 12409 eucalginv 12411 eucalglt 12412 eucalg 12414 sqpweven 12530 2sqpwodd 12531 qnumdenbi 12547 xpsff1o 13214 tx1cn 14774 tx2cn 14775 txdis 14782 psmetxrge0 14837 xmetxpbl 15013 |
| Copyright terms: Public domain | W3C validator |