ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1st2nd2 Unicode version

Theorem 1st2nd2 6284
Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.)
Assertion
Ref Expression
1st2nd2  |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )

Proof of Theorem 1st2nd2
StepHypRef Expression
1 elxp6 6278 . 2  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
21simplbi 274 1  |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   <.cop 3646    X. cxp 4691   ` cfv 5290   1stc1st 6247   2ndc2nd 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fv 5298  df-1st 6249  df-2nd 6250
This theorem is referenced by:  xpopth  6285  eqop  6286  2nd1st  6289  1st2nd  6290  xpmapenlem  6971  opabfi  7061  djuf1olem  7181  exmidapne  7407  dfplpq2  7502  dfmpq2  7503  enqbreq2  7505  enqdc1  7510  preqlu  7620  prop  7623  elnp1st2nd  7624  cauappcvgprlemladd  7806  elreal2  7978  cnref1o  9807  frecuzrdgrrn  10590  frec2uzrdg  10591  frecuzrdgrcl  10592  frecuzrdgsuc  10596  frecuzrdgrclt  10597  frecuzrdgg  10598  frecuzrdgdomlem  10599  frecuzrdgfunlem  10601  frecuzrdgsuctlem  10605  seq3val  10642  seqvalcd  10643  eucalgval  12491  eucalginv  12493  eucalglt  12494  eucalg  12496  sqpweven  12612  2sqpwodd  12613  qnumdenbi  12629  xpsff1o  13296  tx1cn  14856  tx2cn  14857  txdis  14864  psmetxrge0  14919  xmetxpbl  15095
  Copyright terms: Public domain W3C validator