| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1st2nd2 | Unicode version | ||
| Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| Ref | Expression |
|---|---|
| 1st2nd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 6315 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fv 5326 df-1st 6286 df-2nd 6287 |
| This theorem is referenced by: xpopth 6322 eqop 6323 2nd1st 6326 1st2nd 6327 xpmapenlem 7010 opabfi 7100 djuf1olem 7220 exmidapne 7446 dfplpq2 7541 dfmpq2 7542 enqbreq2 7544 enqdc1 7549 preqlu 7659 prop 7662 elnp1st2nd 7663 cauappcvgprlemladd 7845 elreal2 8017 cnref1o 9846 frecuzrdgrrn 10630 frec2uzrdg 10631 frecuzrdgrcl 10632 frecuzrdgsuc 10636 frecuzrdgrclt 10637 frecuzrdgg 10638 frecuzrdgdomlem 10639 frecuzrdgfunlem 10641 frecuzrdgsuctlem 10645 seq3val 10682 seqvalcd 10683 eucalgval 12576 eucalginv 12578 eucalglt 12579 eucalg 12581 sqpweven 12697 2sqpwodd 12698 qnumdenbi 12714 xpsff1o 13382 tx1cn 14943 tx2cn 14944 txdis 14951 psmetxrge0 15006 xmetxpbl 15182 |
| Copyright terms: Public domain | W3C validator |