![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1st2nd2 | Unicode version |
Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
Ref | Expression |
---|---|
1st2nd2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp6 6184 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-iota 5190 df-fun 5230 df-fv 5236 df-1st 6155 df-2nd 6156 |
This theorem is referenced by: xpopth 6191 eqop 6192 2nd1st 6195 1st2nd 6196 xpmapenlem 6863 djuf1olem 7066 exmidapne 7273 dfplpq2 7367 dfmpq2 7368 enqbreq2 7370 enqdc1 7375 preqlu 7485 prop 7488 elnp1st2nd 7489 cauappcvgprlemladd 7671 elreal2 7843 cnref1o 9664 frecuzrdgrrn 10422 frec2uzrdg 10423 frecuzrdgrcl 10424 frecuzrdgsuc 10428 frecuzrdgrclt 10429 frecuzrdgg 10430 frecuzrdgdomlem 10431 frecuzrdgfunlem 10433 frecuzrdgsuctlem 10437 seq3val 10472 seqvalcd 10473 eucalgval 12068 eucalginv 12070 eucalglt 12071 eucalg 12073 sqpweven 12189 2sqpwodd 12190 qnumdenbi 12206 xpsff1o 12787 tx1cn 14065 tx2cn 14066 txdis 14073 psmetxrge0 14128 xmetxpbl 14304 |
Copyright terms: Public domain | W3C validator |