| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1st2nd2 | Unicode version | ||
| Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| Ref | Expression |
|---|---|
| 1st2nd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 6227 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-1st 6198 df-2nd 6199 |
| This theorem is referenced by: xpopth 6234 eqop 6235 2nd1st 6238 1st2nd 6239 xpmapenlem 6910 opabfi 6999 djuf1olem 7119 exmidapne 7327 dfplpq2 7421 dfmpq2 7422 enqbreq2 7424 enqdc1 7429 preqlu 7539 prop 7542 elnp1st2nd 7543 cauappcvgprlemladd 7725 elreal2 7897 cnref1o 9725 frecuzrdgrrn 10500 frec2uzrdg 10501 frecuzrdgrcl 10502 frecuzrdgsuc 10506 frecuzrdgrclt 10507 frecuzrdgg 10508 frecuzrdgdomlem 10509 frecuzrdgfunlem 10511 frecuzrdgsuctlem 10515 seq3val 10552 seqvalcd 10553 eucalgval 12222 eucalginv 12224 eucalglt 12225 eucalg 12227 sqpweven 12343 2sqpwodd 12344 qnumdenbi 12360 xpsff1o 12992 tx1cn 14505 tx2cn 14506 txdis 14513 psmetxrge0 14568 xmetxpbl 14744 |
| Copyright terms: Public domain | W3C validator |