ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1st2nd2 Unicode version

Theorem 1st2nd2 6261
Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.)
Assertion
Ref Expression
1st2nd2  |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )

Proof of Theorem 1st2nd2
StepHypRef Expression
1 elxp6 6255 . 2  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
21simplbi 274 1  |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   <.cop 3636    X. cxp 4673   ` cfv 5271   1stc1st 6224   2ndc2nd 6225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-1st 6226  df-2nd 6227
This theorem is referenced by:  xpopth  6262  eqop  6263  2nd1st  6266  1st2nd  6267  xpmapenlem  6946  opabfi  7035  djuf1olem  7155  exmidapne  7372  dfplpq2  7467  dfmpq2  7468  enqbreq2  7470  enqdc1  7475  preqlu  7585  prop  7588  elnp1st2nd  7589  cauappcvgprlemladd  7771  elreal2  7943  cnref1o  9772  frecuzrdgrrn  10553  frec2uzrdg  10554  frecuzrdgrcl  10555  frecuzrdgsuc  10559  frecuzrdgrclt  10560  frecuzrdgg  10561  frecuzrdgdomlem  10562  frecuzrdgfunlem  10564  frecuzrdgsuctlem  10568  seq3val  10605  seqvalcd  10606  eucalgval  12376  eucalginv  12378  eucalglt  12379  eucalg  12381  sqpweven  12497  2sqpwodd  12498  qnumdenbi  12514  xpsff1o  13181  tx1cn  14741  tx2cn  14742  txdis  14749  psmetxrge0  14804  xmetxpbl  14980
  Copyright terms: Public domain W3C validator