| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1st2nd2 | Unicode version | ||
| Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| Ref | Expression |
|---|---|
| 1st2nd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 6255 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fv 5279 df-1st 6226 df-2nd 6227 |
| This theorem is referenced by: xpopth 6262 eqop 6263 2nd1st 6266 1st2nd 6267 xpmapenlem 6946 opabfi 7035 djuf1olem 7155 exmidapne 7372 dfplpq2 7467 dfmpq2 7468 enqbreq2 7470 enqdc1 7475 preqlu 7585 prop 7588 elnp1st2nd 7589 cauappcvgprlemladd 7771 elreal2 7943 cnref1o 9772 frecuzrdgrrn 10553 frec2uzrdg 10554 frecuzrdgrcl 10555 frecuzrdgsuc 10559 frecuzrdgrclt 10560 frecuzrdgg 10561 frecuzrdgdomlem 10562 frecuzrdgfunlem 10564 frecuzrdgsuctlem 10568 seq3val 10605 seqvalcd 10606 eucalgval 12376 eucalginv 12378 eucalglt 12379 eucalg 12381 sqpweven 12497 2sqpwodd 12498 qnumdenbi 12514 xpsff1o 13181 tx1cn 14741 tx2cn 14742 txdis 14749 psmetxrge0 14804 xmetxpbl 14980 |
| Copyright terms: Public domain | W3C validator |