ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1st2nd2 Unicode version

Theorem 1st2nd2 6066
Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.)
Assertion
Ref Expression
1st2nd2  |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )

Proof of Theorem 1st2nd2
StepHypRef Expression
1 elxp6 6060 . 2  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
21simplbi 272 1  |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   <.cop 3525    X. cxp 4532   ` cfv 5118   1stc1st 6029   2ndc2nd 6030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-iota 5083  df-fun 5120  df-fv 5126  df-1st 6031  df-2nd 6032
This theorem is referenced by:  xpopth  6067  eqop  6068  2nd1st  6071  1st2nd  6072  xpmapenlem  6736  djuf1olem  6931  dfplpq2  7155  dfmpq2  7156  enqbreq2  7158  enqdc1  7163  preqlu  7273  prop  7276  elnp1st2nd  7277  cauappcvgprlemladd  7459  elreal2  7631  cnref1o  9433  frecuzrdgrrn  10174  frec2uzrdg  10175  frecuzrdgrcl  10176  frecuzrdgsuc  10180  frecuzrdgrclt  10181  frecuzrdgg  10182  frecuzrdgdomlem  10183  frecuzrdgfunlem  10185  frecuzrdgsuctlem  10189  seq3val  10224  seqvalcd  10225  eucalgval  11724  eucalginv  11726  eucalglt  11727  eucalg  11729  sqpweven  11842  2sqpwodd  11843  qnumdenbi  11859  tx1cn  12427  tx2cn  12428  txdis  12435  psmetxrge0  12490  xmetxpbl  12666
  Copyright terms: Public domain W3C validator