| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1st2nd2 | Unicode version | ||
| Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| Ref | Expression |
|---|---|
| 1st2nd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 6278 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fv 5298 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: xpopth 6285 eqop 6286 2nd1st 6289 1st2nd 6290 xpmapenlem 6971 opabfi 7061 djuf1olem 7181 exmidapne 7407 dfplpq2 7502 dfmpq2 7503 enqbreq2 7505 enqdc1 7510 preqlu 7620 prop 7623 elnp1st2nd 7624 cauappcvgprlemladd 7806 elreal2 7978 cnref1o 9807 frecuzrdgrrn 10590 frec2uzrdg 10591 frecuzrdgrcl 10592 frecuzrdgsuc 10596 frecuzrdgrclt 10597 frecuzrdgg 10598 frecuzrdgdomlem 10599 frecuzrdgfunlem 10601 frecuzrdgsuctlem 10605 seq3val 10642 seqvalcd 10643 eucalgval 12491 eucalginv 12493 eucalglt 12494 eucalg 12496 sqpweven 12612 2sqpwodd 12613 qnumdenbi 12629 xpsff1o 13296 tx1cn 14856 tx2cn 14857 txdis 14864 psmetxrge0 14919 xmetxpbl 15095 |
| Copyright terms: Public domain | W3C validator |