ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2p2e4 Unicode version

Theorem 2p2e4 9109
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
2p2e4  |-  ( 2  +  2 )  =  4

Proof of Theorem 2p2e4
StepHypRef Expression
1 df-2 9041 . . 3  |-  2  =  ( 1  +  1 )
21oveq2i 5929 . 2  |-  ( 2  +  2 )  =  ( 2  +  ( 1  +  1 ) )
3 df-4 9043 . . 3  |-  4  =  ( 3  +  1 )
4 df-3 9042 . . . 4  |-  3  =  ( 2  +  1 )
54oveq1i 5928 . . 3  |-  ( 3  +  1 )  =  ( ( 2  +  1 )  +  1 )
6 2cn 9053 . . . 4  |-  2  e.  CC
7 ax-1cn 7965 . . . 4  |-  1  e.  CC
86, 7, 7addassi 8027 . . 3  |-  ( ( 2  +  1 )  +  1 )  =  ( 2  +  ( 1  +  1 ) )
93, 5, 83eqtri 2218 . 2  |-  4  =  ( 2  +  ( 1  +  1 ) )
102, 9eqtr4i 2217 1  |-  ( 2  +  2 )  =  4
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5918   1c1 7873    + caddc 7875   2c2 9033   3c3 9034   4c4 9035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-addrcl 7969  ax-addass 7974
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-2 9041  df-3 9042  df-4 9043
This theorem is referenced by:  2t2e4  9136  i4  10713  4bc2eq6  10845  resqrexlemover  11154  resqrexlemcalc1  11158  ef01bndlem  11899  6gcd4e2  12132  pythagtriplem1  12403
  Copyright terms: Public domain W3C validator