| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2p2e4 | Unicode version | ||
| Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2p2e4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9066 |
. . 3
| |
| 2 | 1 | oveq2i 5936 |
. 2
|
| 3 | df-4 9068 |
. . 3
| |
| 4 | df-3 9067 |
. . . 4
| |
| 5 | 4 | oveq1i 5935 |
. . 3
|
| 6 | 2cn 9078 |
. . . 4
| |
| 7 | ax-1cn 7989 |
. . . 4
| |
| 8 | 6, 7, 7 | addassi 8051 |
. . 3
|
| 9 | 3, 5, 8 | 3eqtri 2221 |
. 2
|
| 10 | 2, 9 | eqtr4i 2220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-addrcl 7993 ax-addass 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-2 9066 df-3 9067 df-4 9068 |
| This theorem is referenced by: 2t2e4 9162 i4 10751 4bc2eq6 10883 resqrexlemover 11192 resqrexlemcalc1 11196 ef01bndlem 11938 6gcd4e2 12187 pythagtriplem1 12459 |
| Copyright terms: Public domain | W3C validator |