ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2p2e4 Unicode version

Theorem 2p2e4 9163
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
2p2e4  |-  ( 2  +  2 )  =  4

Proof of Theorem 2p2e4
StepHypRef Expression
1 df-2 9095 . . 3  |-  2  =  ( 1  +  1 )
21oveq2i 5955 . 2  |-  ( 2  +  2 )  =  ( 2  +  ( 1  +  1 ) )
3 df-4 9097 . . 3  |-  4  =  ( 3  +  1 )
4 df-3 9096 . . . 4  |-  3  =  ( 2  +  1 )
54oveq1i 5954 . . 3  |-  ( 3  +  1 )  =  ( ( 2  +  1 )  +  1 )
6 2cn 9107 . . . 4  |-  2  e.  CC
7 ax-1cn 8018 . . . 4  |-  1  e.  CC
86, 7, 7addassi 8080 . . 3  |-  ( ( 2  +  1 )  +  1 )  =  ( 2  +  ( 1  +  1 ) )
93, 5, 83eqtri 2230 . 2  |-  4  =  ( 2  +  ( 1  +  1 ) )
102, 9eqtr4i 2229 1  |-  ( 2  +  2 )  =  4
Colors of variables: wff set class
Syntax hints:    = wceq 1373  (class class class)co 5944   1c1 7926    + caddc 7928   2c2 9087   3c3 9088   4c4 9089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-addrcl 8022  ax-addass 8027
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-2 9095  df-3 9096  df-4 9097
This theorem is referenced by:  2t2e4  9191  i4  10787  4bc2eq6  10919  resqrexlemover  11321  resqrexlemcalc1  11325  ef01bndlem  12067  6gcd4e2  12316  pythagtriplem1  12588
  Copyright terms: Public domain W3C validator