ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2p2e4 Unicode version

Theorem 2p2e4 8984
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
2p2e4  |-  ( 2  +  2 )  =  4

Proof of Theorem 2p2e4
StepHypRef Expression
1 df-2 8916 . . 3  |-  2  =  ( 1  +  1 )
21oveq2i 5853 . 2  |-  ( 2  +  2 )  =  ( 2  +  ( 1  +  1 ) )
3 df-4 8918 . . 3  |-  4  =  ( 3  +  1 )
4 df-3 8917 . . . 4  |-  3  =  ( 2  +  1 )
54oveq1i 5852 . . 3  |-  ( 3  +  1 )  =  ( ( 2  +  1 )  +  1 )
6 2cn 8928 . . . 4  |-  2  e.  CC
7 ax-1cn 7846 . . . 4  |-  1  e.  CC
86, 7, 7addassi 7907 . . 3  |-  ( ( 2  +  1 )  +  1 )  =  ( 2  +  ( 1  +  1 ) )
93, 5, 83eqtri 2190 . 2  |-  4  =  ( 2  +  ( 1  +  1 ) )
102, 9eqtr4i 2189 1  |-  ( 2  +  2 )  =  4
Colors of variables: wff set class
Syntax hints:    = wceq 1343  (class class class)co 5842   1c1 7754    + caddc 7756   2c2 8908   3c3 8909   4c4 8910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-addrcl 7850  ax-addass 7855
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845  df-2 8916  df-3 8917  df-4 8918
This theorem is referenced by:  2t2e4  9011  i4  10557  4bc2eq6  10687  resqrexlemover  10952  resqrexlemcalc1  10956  ef01bndlem  11697  6gcd4e2  11928  pythagtriplem1  12197
  Copyright terms: Public domain W3C validator