ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2p2e4 Unicode version

Theorem 2p2e4 9237
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
2p2e4  |-  ( 2  +  2 )  =  4

Proof of Theorem 2p2e4
StepHypRef Expression
1 df-2 9169 . . 3  |-  2  =  ( 1  +  1 )
21oveq2i 6012 . 2  |-  ( 2  +  2 )  =  ( 2  +  ( 1  +  1 ) )
3 df-4 9171 . . 3  |-  4  =  ( 3  +  1 )
4 df-3 9170 . . . 4  |-  3  =  ( 2  +  1 )
54oveq1i 6011 . . 3  |-  ( 3  +  1 )  =  ( ( 2  +  1 )  +  1 )
6 2cn 9181 . . . 4  |-  2  e.  CC
7 ax-1cn 8092 . . . 4  |-  1  e.  CC
86, 7, 7addassi 8154 . . 3  |-  ( ( 2  +  1 )  +  1 )  =  ( 2  +  ( 1  +  1 ) )
93, 5, 83eqtri 2254 . 2  |-  4  =  ( 2  +  ( 1  +  1 ) )
102, 9eqtr4i 2253 1  |-  ( 2  +  2 )  =  4
Colors of variables: wff set class
Syntax hints:    = wceq 1395  (class class class)co 6001   1c1 8000    + caddc 8002   2c2 9161   3c3 9162   4c4 9163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-addrcl 8096  ax-addass 8101
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-2 9169  df-3 9170  df-4 9171
This theorem is referenced by:  2t2e4  9265  i4  10864  4bc2eq6  10996  resqrexlemover  11521  resqrexlemcalc1  11525  ef01bndlem  12267  6gcd4e2  12516  pythagtriplem1  12788
  Copyright terms: Public domain W3C validator