ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  i4 Unicode version

Theorem i4 10716
Description:  _i to the fourth power. (Contributed by NM, 31-Jan-2007.)
Assertion
Ref Expression
i4  |-  ( _i
^ 4 )  =  1

Proof of Theorem i4
StepHypRef Expression
1 ax-icn 7969 . . 3  |-  _i  e.  CC
2 2nn0 9260 . . 3  |-  2  e.  NN0
3 expadd 10655 . . 3  |-  ( ( _i  e.  CC  /\  2  e.  NN0  /\  2  e.  NN0 )  ->  (
_i ^ ( 2  +  2 ) )  =  ( ( _i
^ 2 )  x.  ( _i ^ 2 ) ) )
41, 2, 2, 3mp3an 1348 . 2  |-  ( _i
^ ( 2  +  2 ) )  =  ( ( _i ^
2 )  x.  (
_i ^ 2 ) )
5 2p2e4 9111 . . 3  |-  ( 2  +  2 )  =  4
65oveq2i 5930 . 2  |-  ( _i
^ ( 2  +  2 ) )  =  ( _i ^ 4 )
7 i2 10714 . . . 4  |-  ( _i
^ 2 )  = 
-u 1
87, 7oveq12i 5931 . . 3  |-  ( ( _i ^ 2 )  x.  ( _i ^
2 ) )  =  ( -u 1  x.  -u 1 )
9 ax-1cn 7967 . . . 4  |-  1  e.  CC
109, 9mul2negi 8427 . . 3  |-  ( -u
1  x.  -u 1
)  =  ( 1  x.  1 )
11 1t1e1 9137 . . 3  |-  ( 1  x.  1 )  =  1
128, 10, 113eqtri 2218 . 2  |-  ( ( _i ^ 2 )  x.  ( _i ^
2 ) )  =  1
134, 6, 123eqtr3i 2222 1  |-  ( _i
^ 4 )  =  1
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872   1c1 7875   _ici 7876    + caddc 7877    x. cmul 7879   -ucneg 8193   2c2 9035   4c4 9037   NN0cn0 9243   ^cexp 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-exp 10613
This theorem is referenced by:  iexpcyc  10718
  Copyright terms: Public domain W3C validator