ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7p3e10 Unicode version

Theorem 7p3e10 9352
Description: 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
7p3e10  |-  ( 7  +  3 )  = ; 1
0

Proof of Theorem 7p3e10
StepHypRef Expression
1 df-3 8876 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 5829 . . 3  |-  ( 7  +  3 )  =  ( 7  +  ( 2  +  1 ) )
3 7cn 8900 . . . 4  |-  7  e.  CC
4 2cn 8887 . . . 4  |-  2  e.  CC
5 ax-1cn 7808 . . . 4  |-  1  e.  CC
63, 4, 5addassi 7869 . . 3  |-  ( ( 7  +  2 )  +  1 )  =  ( 7  +  ( 2  +  1 ) )
72, 6eqtr4i 2181 . 2  |-  ( 7  +  3 )  =  ( ( 7  +  2 )  +  1 )
8 7p2e9 8967 . . 3  |-  ( 7  +  2 )  =  9
98oveq1i 5828 . 2  |-  ( ( 7  +  2 )  +  1 )  =  ( 9  +  1 )
10 9p1e10 9280 . 2  |-  ( 9  +  1 )  = ; 1
0
117, 9, 103eqtri 2182 1  |-  ( 7  +  3 )  = ; 1
0
Colors of variables: wff set class
Syntax hints:    = wceq 1335  (class class class)co 5818   0cc0 7715   1c1 7716    + caddc 7718   2c2 8867   3c3 8868   7c7 8872   9c9 8874  ;cdc 9278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-sep 4082  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-1rid 7822  ax-0id 7823  ax-cnre 7826
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-iota 5132  df-fv 5175  df-ov 5821  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-5 8878  df-6 8879  df-7 8880  df-8 8881  df-9 8882  df-dec 9279
This theorem is referenced by:  7p4e11  9353
  Copyright terms: Public domain W3C validator