ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7p3e10 Unicode version

Theorem 7p3e10 9652
Description: 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
7p3e10  |-  ( 7  +  3 )  = ; 1
0

Proof of Theorem 7p3e10
StepHypRef Expression
1 df-3 9170 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 6012 . . 3  |-  ( 7  +  3 )  =  ( 7  +  ( 2  +  1 ) )
3 7cn 9194 . . . 4  |-  7  e.  CC
4 2cn 9181 . . . 4  |-  2  e.  CC
5 ax-1cn 8092 . . . 4  |-  1  e.  CC
63, 4, 5addassi 8154 . . 3  |-  ( ( 7  +  2 )  +  1 )  =  ( 7  +  ( 2  +  1 ) )
72, 6eqtr4i 2253 . 2  |-  ( 7  +  3 )  =  ( ( 7  +  2 )  +  1 )
8 7p2e9 9262 . . 3  |-  ( 7  +  2 )  =  9
98oveq1i 6011 . 2  |-  ( ( 7  +  2 )  +  1 )  =  ( 9  +  1 )
10 9p1e10 9580 . 2  |-  ( 9  +  1 )  = ; 1
0
117, 9, 103eqtri 2254 1  |-  ( 7  +  3 )  = ; 1
0
Colors of variables: wff set class
Syntax hints:    = wceq 1395  (class class class)co 6001   0cc0 7999   1c1 8000    + caddc 8002   2c2 9161   3c3 9162   7c7 9166   9c9 9168  ;cdc 9578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-1rid 8106  ax-0id 8107  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-dec 9579
This theorem is referenced by:  7p4e11  9653
  Copyright terms: Public domain W3C validator