| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 7p3e10 | Unicode version | ||
| Description: 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 7p3e10 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9052 |
. . . 4
| |
| 2 | 1 | oveq2i 5934 |
. . 3
|
| 3 | 7cn 9076 |
. . . 4
| |
| 4 | 2cn 9063 |
. . . 4
| |
| 5 | ax-1cn 7974 |
. . . 4
| |
| 6 | 3, 4, 5 | addassi 8036 |
. . 3
|
| 7 | 2, 6 | eqtr4i 2220 |
. 2
|
| 8 | 7p2e9 9144 |
. . 3
| |
| 9 | 8 | oveq1i 5933 |
. 2
|
| 10 | 9p1e10 9461 |
. 2
| |
| 11 | 7, 9, 10 | 3eqtri 2221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-1rid 7988 ax-0id 7989 ax-cnre 7992 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-5 9054 df-6 9055 df-7 9056 df-8 9057 df-9 9058 df-dec 9460 |
| This theorem is referenced by: 7p4e11 9534 |
| Copyright terms: Public domain | W3C validator |