Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 7p3e10 | Unicode version |
Description: 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
7p3e10 | ; |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8876 | . . . 4 | |
2 | 1 | oveq2i 5829 | . . 3 |
3 | 7cn 8900 | . . . 4 | |
4 | 2cn 8887 | . . . 4 | |
5 | ax-1cn 7808 | . . . 4 | |
6 | 3, 4, 5 | addassi 7869 | . . 3 |
7 | 2, 6 | eqtr4i 2181 | . 2 |
8 | 7p2e9 8967 | . . 3 | |
9 | 8 | oveq1i 5828 | . 2 |
10 | 9p1e10 9280 | . 2 ; | |
11 | 7, 9, 10 | 3eqtri 2182 | 1 ; |
Colors of variables: wff set class |
Syntax hints: wceq 1335 (class class class)co 5818 cc0 7715 c1 7716 caddc 7718 c2 8867 c3 8868 c7 8872 c9 8874 ;cdc 9278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-1rid 7822 ax-0id 7823 ax-cnre 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-iota 5132 df-fv 5175 df-ov 5821 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-5 8878 df-6 8879 df-7 8880 df-8 8881 df-9 8882 df-dec 9279 |
This theorem is referenced by: 7p4e11 9353 |
Copyright terms: Public domain | W3C validator |