ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7p3e10 Unicode version

Theorem 7p3e10 9494
Description: 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
7p3e10  |-  ( 7  +  3 )  = ; 1
0

Proof of Theorem 7p3e10
StepHypRef Expression
1 df-3 9015 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 5911 . . 3  |-  ( 7  +  3 )  =  ( 7  +  ( 2  +  1 ) )
3 7cn 9039 . . . 4  |-  7  e.  CC
4 2cn 9026 . . . 4  |-  2  e.  CC
5 ax-1cn 7939 . . . 4  |-  1  e.  CC
63, 4, 5addassi 8001 . . 3  |-  ( ( 7  +  2 )  +  1 )  =  ( 7  +  ( 2  +  1 ) )
72, 6eqtr4i 2213 . 2  |-  ( 7  +  3 )  =  ( ( 7  +  2 )  +  1 )
8 7p2e9 9106 . . 3  |-  ( 7  +  2 )  =  9
98oveq1i 5910 . 2  |-  ( ( 7  +  2 )  +  1 )  =  ( 9  +  1 )
10 9p1e10 9422 . 2  |-  ( 9  +  1 )  = ; 1
0
117, 9, 103eqtri 2214 1  |-  ( 7  +  3 )  = ; 1
0
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5900   0cc0 7846   1c1 7847    + caddc 7849   2c2 9006   3c3 9007   7c7 9011   9c9 9013  ;cdc 9420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4139  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-1rid 7953  ax-0id 7954  ax-cnre 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-iota 5199  df-fv 5246  df-ov 5903  df-inn 8956  df-2 9014  df-3 9015  df-4 9016  df-5 9017  df-6 9018  df-7 9019  df-8 9020  df-9 9021  df-dec 9421
This theorem is referenced by:  7p4e11  9495
  Copyright terms: Public domain W3C validator