ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axapti Unicode version

Theorem axapti 7969
Description: Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-apti 7868 with ordering on the extended reals.) (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
axapti  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <  B  \/  B  <  A ) )  ->  A  =  B )

Proof of Theorem axapti
StepHypRef Expression
1 ltxrlt 7964 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
2 ltxrlt 7964 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  B 
<RR  A ) )
32ancoms 266 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  <->  B 
<RR  A ) )
41, 3orbi12d 783 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  B  < 
A )  <->  ( A  <RR  B  \/  B  <RR  A ) ) )
54notbid 657 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  ( A  <  B  \/  B  <  A )  <->  -.  ( A  <RR  B  \/  B  <RR  A ) ) )
6 ax-pre-apti 7868 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
763expia 1195 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  ( A 
<RR  B  \/  B  <RR  A )  ->  A  =  B ) )
85, 7sylbid 149 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  ( A  <  B  \/  B  <  A )  ->  A  =  B ) )
983impia 1190 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <  B  \/  B  <  A ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982   RRcr 7752    <RR cltrr 7757    < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-apti 7868
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-pnf 7935  df-mnf 7936  df-ltxr 7938
This theorem is referenced by:  lttri3  7978  reapti  8477
  Copyright terms: Public domain W3C validator