| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axapti | Unicode version | ||
| Description: Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-apti 8053 with ordering on the extended reals.) (Contributed by Jim Kingdon, 29-Jan-2020.) |
| Ref | Expression |
|---|---|
| axapti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltxrlt 8151 |
. . . . 5
| |
| 2 | ltxrlt 8151 |
. . . . . 6
| |
| 3 | 2 | ancoms 268 |
. . . . 5
|
| 4 | 1, 3 | orbi12d 795 |
. . . 4
|
| 5 | 4 | notbid 669 |
. . 3
|
| 6 | ax-pre-apti 8053 |
. . . 4
| |
| 7 | 6 | 3expia 1208 |
. . 3
|
| 8 | 5, 7 | sylbid 150 |
. 2
|
| 9 | 8 | 3impia 1203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-pre-apti 8053 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-xp 4686 df-pnf 8122 df-mnf 8123 df-ltxr 8125 |
| This theorem is referenced by: lttri3 8165 reapti 8665 |
| Copyright terms: Public domain | W3C validator |