Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axmulgt0 | Unicode version |
Description: The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-mulgt0 7870 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
axmulgt0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pre-mulgt0 7870 | . 2 | |
2 | 0re 7899 | . . . 4 | |
3 | ltxrlt 7964 | . . . 4 | |
4 | 2, 3 | mpan 421 | . . 3 |
5 | ltxrlt 7964 | . . . 4 | |
6 | 2, 5 | mpan 421 | . . 3 |
7 | 4, 6 | bi2anan9 596 | . 2 |
8 | remulcl 7881 | . . 3 | |
9 | ltxrlt 7964 | . . 3 | |
10 | 2, 8, 9 | sylancr 411 | . 2 |
11 | 1, 7, 10 | 3imtr4d 202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 cc0 7753 cltrr 7757 cmul 7758 clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-mulrcl 7852 ax-rnegex 7862 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-mnf 7936 df-ltxr 7938 |
This theorem is referenced by: mulgt0 7973 mulgt0i 8008 sin02gt0 11704 sinq12gt0 13401 |
Copyright terms: Public domain | W3C validator |