ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulgt0 Unicode version

Theorem axmulgt0 8029
Description: The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-mulgt0 7928 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axmulgt0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  ->  0  <  ( A  x.  B ) ) )

Proof of Theorem axmulgt0
StepHypRef Expression
1 ax-pre-mulgt0 7928 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
2 0re 7957 . . . 4  |-  0  e.  RR
3 ltxrlt 8023 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  0 
<RR  A ) )
42, 3mpan 424 . . 3  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <RR  A ) )
5 ltxrlt 8023 . . . 4  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <  B  <->  0 
<RR  B ) )
62, 5mpan 424 . . 3  |-  ( B  e.  RR  ->  (
0  <  B  <->  0  <RR  B ) )
74, 6bi2anan9 606 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  <->  ( 0  <RR  A  /\  0  <RR  B ) ) )
8 remulcl 7939 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
9 ltxrlt 8023 . . 3  |-  ( ( 0  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 0  < 
( A  x.  B
)  <->  0  <RR  ( A  x.  B ) ) )
102, 8, 9sylancr 414 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( A  x.  B )  <->  0 
<RR  ( A  x.  B
) ) )
111, 7, 103imtr4d 203 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  ->  0  <  ( A  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   class class class wbr 4004  (class class class)co 5875   RRcr 7810   0cc0 7811    <RR cltrr 7815    x. cmul 7816    < clt 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908  ax-mulrcl 7910  ax-rnegex 7920  ax-pre-mulgt0 7928
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-pnf 7994  df-mnf 7995  df-ltxr 7997
This theorem is referenced by:  mulgt0  8032  mulgt0i  8067  sin02gt0  11771  sinq12gt0  14254
  Copyright terms: Public domain W3C validator