ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulgt0 Unicode version

Theorem axmulgt0 8214
Description: The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-mulgt0 8112 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axmulgt0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  ->  0  <  ( A  x.  B ) ) )

Proof of Theorem axmulgt0
StepHypRef Expression
1 ax-pre-mulgt0 8112 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
2 0re 8142 . . . 4  |-  0  e.  RR
3 ltxrlt 8208 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  0 
<RR  A ) )
42, 3mpan 424 . . 3  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <RR  A ) )
5 ltxrlt 8208 . . . 4  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <  B  <->  0 
<RR  B ) )
62, 5mpan 424 . . 3  |-  ( B  e.  RR  ->  (
0  <  B  <->  0  <RR  B ) )
74, 6bi2anan9 608 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  <->  ( 0  <RR  A  /\  0  <RR  B ) ) )
8 remulcl 8123 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
9 ltxrlt 8208 . . 3  |-  ( ( 0  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 0  < 
( A  x.  B
)  <->  0  <RR  ( A  x.  B ) ) )
102, 8, 9sylancr 414 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( A  x.  B )  <->  0 
<RR  ( A  x.  B
) ) )
111, 7, 103imtr4d 203 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  ->  0  <  ( A  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   RRcr 7994   0cc0 7995    <RR cltrr 7999    x. cmul 8000    < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-mulrcl 8094  ax-rnegex 8104  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-pnf 8179  df-mnf 8180  df-ltxr 8182
This theorem is referenced by:  mulgt0  8217  mulgt0i  8252  sin02gt0  12270  sinq12gt0  15498
  Copyright terms: Public domain W3C validator