| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttri3 | Unicode version | ||
| Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.) |
| Ref | Expression |
|---|---|
| lttri3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 8223 |
. . . . 5
| |
| 2 | breq2 4087 |
. . . . . 6
| |
| 3 | 2 | notbid 671 |
. . . . 5
|
| 4 | 1, 3 | syl5ibcom 155 |
. . . 4
|
| 5 | breq1 4086 |
. . . . . 6
| |
| 6 | 5 | notbid 671 |
. . . . 5
|
| 7 | 1, 6 | syl5ibcom 155 |
. . . 4
|
| 8 | 4, 7 | jcad 307 |
. . 3
|
| 9 | 8 | adantr 276 |
. 2
|
| 10 | ioran 757 |
. . 3
| |
| 11 | axapti 8217 |
. . . 4
| |
| 12 | 11 | 3expia 1229 |
. . 3
|
| 13 | 10, 12 | biimtrrid 153 |
. 2
|
| 14 | 9, 13 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-apti 8114 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8183 df-mnf 8184 df-ltxr 8186 |
| This theorem is referenced by: letri3 8227 lttri3i 8244 lttri3d 8261 inelr 8731 lbinf 9095 suprubex 9098 suprlubex 9099 suprleubex 9101 sup3exmid 9104 suprzclex 9545 infrenegsupex 9789 supminfex 9792 infregelbex 9793 xrlttri3 9993 zsupcl 10451 zssinfcl 10452 infssuzledc 10454 suprzcl2dc 10459 maxleim 11716 maxabs 11720 maxleast 11724 dvdslegcd 12485 bezoutlemsup 12530 dfgcd2 12535 lcmgcdlem 12599 suplociccex 15299 pilem3 15457 taupi 16441 |
| Copyright terms: Public domain | W3C validator |