| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttri3 | Unicode version | ||
| Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.) |
| Ref | Expression |
|---|---|
| lttri3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 8149 |
. . . . 5
| |
| 2 | breq2 4048 |
. . . . . 6
| |
| 3 | 2 | notbid 669 |
. . . . 5
|
| 4 | 1, 3 | syl5ibcom 155 |
. . . 4
|
| 5 | breq1 4047 |
. . . . . 6
| |
| 6 | 5 | notbid 669 |
. . . . 5
|
| 7 | 1, 6 | syl5ibcom 155 |
. . . 4
|
| 8 | 4, 7 | jcad 307 |
. . 3
|
| 9 | 8 | adantr 276 |
. 2
|
| 10 | ioran 754 |
. . 3
| |
| 11 | axapti 8143 |
. . . 4
| |
| 12 | 11 | 3expia 1208 |
. . 3
|
| 13 | 10, 12 | biimtrrid 153 |
. 2
|
| 14 | 9, 13 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltirr 8037 ax-pre-apti 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-pnf 8109 df-mnf 8110 df-ltxr 8112 |
| This theorem is referenced by: letri3 8153 lttri3i 8170 lttri3d 8187 inelr 8657 lbinf 9021 suprubex 9024 suprlubex 9025 suprleubex 9027 sup3exmid 9030 suprzclex 9471 infrenegsupex 9715 supminfex 9718 infregelbex 9719 xrlttri3 9919 zsupcl 10374 zssinfcl 10375 infssuzledc 10377 suprzcl2dc 10382 maxleim 11516 maxabs 11520 maxleast 11524 dvdslegcd 12285 bezoutlemsup 12330 dfgcd2 12335 lcmgcdlem 12399 suplociccex 15097 pilem3 15255 taupi 16012 |
| Copyright terms: Public domain | W3C validator |