ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri3 Unicode version

Theorem lttri3 7970
Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.)
Assertion
Ref Expression
lttri3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )

Proof of Theorem lttri3
StepHypRef Expression
1 ltnr 7967 . . . . 5  |-  ( A  e.  RR  ->  -.  A  <  A )
2 breq2 3981 . . . . . 6  |-  ( A  =  B  ->  ( A  <  A  <->  A  <  B ) )
32notbid 657 . . . . 5  |-  ( A  =  B  ->  ( -.  A  <  A  <->  -.  A  <  B ) )
41, 3syl5ibcom 154 . . . 4  |-  ( A  e.  RR  ->  ( A  =  B  ->  -.  A  <  B ) )
5 breq1 3980 . . . . . 6  |-  ( A  =  B  ->  ( A  <  A  <->  B  <  A ) )
65notbid 657 . . . . 5  |-  ( A  =  B  ->  ( -.  A  <  A  <->  -.  B  <  A ) )
71, 6syl5ibcom 154 . . . 4  |-  ( A  e.  RR  ->  ( A  =  B  ->  -.  B  <  A ) )
84, 7jcad 305 . . 3  |-  ( A  e.  RR  ->  ( A  =  B  ->  ( -.  A  <  B  /\  -.  B  <  A
) ) )
98adantr 274 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
10 ioran 742 . . 3  |-  ( -.  ( A  <  B  \/  B  <  A )  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) )
11 axapti 7961 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <  B  \/  B  <  A ) )  ->  A  =  B )
12113expia 1194 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  ( A  <  B  \/  B  <  A )  ->  A  =  B ) )
1310, 12syl5bir 152 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -.  A  <  B  /\  -.  B  <  A )  ->  A  =  B ) )
149, 13impbid 128 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1342    e. wcel 2135   class class class wbr 3977   RRcr 7744    < clt 7925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-pre-ltirr 7857  ax-pre-apti 7860
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2724  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-xp 4605  df-pnf 7927  df-mnf 7928  df-ltxr 7930
This theorem is referenced by:  letri3  7971  lttri3i  7988  lttri3d  8005  inelr  8474  lbinf  8835  suprubex  8838  suprlubex  8839  suprleubex  8841  sup3exmid  8844  suprzclex  9281  infrenegsupex  9524  supminfex  9527  infregelbex  9528  xrlttri3  9725  maxleim  11137  maxabs  11141  maxleast  11145  zsupcl  11869  zssinfcl  11870  infssuzledc  11872  suprzcl2dc  11877  dvdslegcd  11886  bezoutlemsup  11931  dfgcd2  11936  lcmgcdlem  11998  suplociccex  13170  pilem3  13271  taupi  13811
  Copyright terms: Public domain W3C validator