Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lttri3 | Unicode version |
Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.) |
Ref | Expression |
---|---|
lttri3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 7971 | . . . . 5 | |
2 | breq2 3985 | . . . . . 6 | |
3 | 2 | notbid 657 | . . . . 5 |
4 | 1, 3 | syl5ibcom 154 | . . . 4 |
5 | breq1 3984 | . . . . . 6 | |
6 | 5 | notbid 657 | . . . . 5 |
7 | 1, 6 | syl5ibcom 154 | . . . 4 |
8 | 4, 7 | jcad 305 | . . 3 |
9 | 8 | adantr 274 | . 2 |
10 | ioran 742 | . . 3 | |
11 | axapti 7965 | . . . 4 | |
12 | 11 | 3expia 1195 | . . 3 |
13 | 10, 12 | syl5bir 152 | . 2 |
14 | 9, 13 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 class class class wbr 3981 cr 7748 clt 7929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-pre-ltirr 7861 ax-pre-apti 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-pnf 7931 df-mnf 7932 df-ltxr 7934 |
This theorem is referenced by: letri3 7975 lttri3i 7992 lttri3d 8009 inelr 8478 lbinf 8839 suprubex 8842 suprlubex 8843 suprleubex 8845 sup3exmid 8848 suprzclex 9285 infrenegsupex 9528 supminfex 9531 infregelbex 9532 xrlttri3 9729 maxleim 11143 maxabs 11147 maxleast 11151 zsupcl 11876 zssinfcl 11877 infssuzledc 11879 suprzcl2dc 11884 dvdslegcd 11893 bezoutlemsup 11938 dfgcd2 11943 lcmgcdlem 12005 suplociccex 13203 pilem3 13304 taupi 13909 |
Copyright terms: Public domain | W3C validator |