| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttri3 | Unicode version | ||
| Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.) |
| Ref | Expression |
|---|---|
| lttri3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 8151 |
. . . . 5
| |
| 2 | breq2 4049 |
. . . . . 6
| |
| 3 | 2 | notbid 669 |
. . . . 5
|
| 4 | 1, 3 | syl5ibcom 155 |
. . . 4
|
| 5 | breq1 4048 |
. . . . . 6
| |
| 6 | 5 | notbid 669 |
. . . . 5
|
| 7 | 1, 6 | syl5ibcom 155 |
. . . 4
|
| 8 | 4, 7 | jcad 307 |
. . 3
|
| 9 | 8 | adantr 276 |
. 2
|
| 10 | ioran 754 |
. . 3
| |
| 11 | axapti 8145 |
. . . 4
| |
| 12 | 11 | 3expia 1208 |
. . 3
|
| 13 | 10, 12 | biimtrrid 153 |
. 2
|
| 14 | 9, 13 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltirr 8039 ax-pre-apti 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-pnf 8111 df-mnf 8112 df-ltxr 8114 |
| This theorem is referenced by: letri3 8155 lttri3i 8172 lttri3d 8189 inelr 8659 lbinf 9023 suprubex 9026 suprlubex 9027 suprleubex 9029 sup3exmid 9032 suprzclex 9473 infrenegsupex 9717 supminfex 9720 infregelbex 9721 xrlttri3 9921 zsupcl 10376 zssinfcl 10377 infssuzledc 10379 suprzcl2dc 10384 maxleim 11549 maxabs 11553 maxleast 11557 dvdslegcd 12318 bezoutlemsup 12363 dfgcd2 12368 lcmgcdlem 12432 suplociccex 15130 pilem3 15288 taupi 16049 |
| Copyright terms: Public domain | W3C validator |