| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttri3 | Unicode version | ||
| Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.) |
| Ref | Expression |
|---|---|
| lttri3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 8184 |
. . . . 5
| |
| 2 | breq2 4063 |
. . . . . 6
| |
| 3 | 2 | notbid 669 |
. . . . 5
|
| 4 | 1, 3 | syl5ibcom 155 |
. . . 4
|
| 5 | breq1 4062 |
. . . . . 6
| |
| 6 | 5 | notbid 669 |
. . . . 5
|
| 7 | 1, 6 | syl5ibcom 155 |
. . . 4
|
| 8 | 4, 7 | jcad 307 |
. . 3
|
| 9 | 8 | adantr 276 |
. 2
|
| 10 | ioran 754 |
. . 3
| |
| 11 | axapti 8178 |
. . . 4
| |
| 12 | 11 | 3expia 1208 |
. . 3
|
| 13 | 10, 12 | biimtrrid 153 |
. 2
|
| 14 | 9, 13 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 ax-pre-apti 8075 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-pnf 8144 df-mnf 8145 df-ltxr 8147 |
| This theorem is referenced by: letri3 8188 lttri3i 8205 lttri3d 8222 inelr 8692 lbinf 9056 suprubex 9059 suprlubex 9060 suprleubex 9062 sup3exmid 9065 suprzclex 9506 infrenegsupex 9750 supminfex 9753 infregelbex 9754 xrlttri3 9954 zsupcl 10411 zssinfcl 10412 infssuzledc 10414 suprzcl2dc 10419 maxleim 11631 maxabs 11635 maxleast 11639 dvdslegcd 12400 bezoutlemsup 12445 dfgcd2 12450 lcmgcdlem 12514 suplociccex 15212 pilem3 15370 taupi 16214 |
| Copyright terms: Public domain | W3C validator |