Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lttri3 | Unicode version |
Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.) |
Ref | Expression |
---|---|
lttri3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 7967 | . . . . 5 | |
2 | breq2 3981 | . . . . . 6 | |
3 | 2 | notbid 657 | . . . . 5 |
4 | 1, 3 | syl5ibcom 154 | . . . 4 |
5 | breq1 3980 | . . . . . 6 | |
6 | 5 | notbid 657 | . . . . 5 |
7 | 1, 6 | syl5ibcom 154 | . . . 4 |
8 | 4, 7 | jcad 305 | . . 3 |
9 | 8 | adantr 274 | . 2 |
10 | ioran 742 | . . 3 | |
11 | axapti 7961 | . . . 4 | |
12 | 11 | 3expia 1194 | . . 3 |
13 | 10, 12 | syl5bir 152 | . 2 |
14 | 9, 13 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1342 wcel 2135 class class class wbr 3977 cr 7744 clt 7925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-pre-ltirr 7857 ax-pre-apti 7860 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-rab 2451 df-v 2724 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-xp 4605 df-pnf 7927 df-mnf 7928 df-ltxr 7930 |
This theorem is referenced by: letri3 7971 lttri3i 7988 lttri3d 8005 inelr 8474 lbinf 8835 suprubex 8838 suprlubex 8839 suprleubex 8841 sup3exmid 8844 suprzclex 9281 infrenegsupex 9524 supminfex 9527 infregelbex 9528 xrlttri3 9725 maxleim 11137 maxabs 11141 maxleast 11145 zsupcl 11869 zssinfcl 11870 infssuzledc 11872 suprzcl2dc 11877 dvdslegcd 11886 bezoutlemsup 11931 dfgcd2 11936 lcmgcdlem 11998 suplociccex 13170 pilem3 13271 taupi 13811 |
Copyright terms: Public domain | W3C validator |