ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri3 Unicode version

Theorem lttri3 8067
Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.)
Assertion
Ref Expression
lttri3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )

Proof of Theorem lttri3
StepHypRef Expression
1 ltnr 8064 . . . . 5  |-  ( A  e.  RR  ->  -.  A  <  A )
2 breq2 4022 . . . . . 6  |-  ( A  =  B  ->  ( A  <  A  <->  A  <  B ) )
32notbid 668 . . . . 5  |-  ( A  =  B  ->  ( -.  A  <  A  <->  -.  A  <  B ) )
41, 3syl5ibcom 155 . . . 4  |-  ( A  e.  RR  ->  ( A  =  B  ->  -.  A  <  B ) )
5 breq1 4021 . . . . . 6  |-  ( A  =  B  ->  ( A  <  A  <->  B  <  A ) )
65notbid 668 . . . . 5  |-  ( A  =  B  ->  ( -.  A  <  A  <->  -.  B  <  A ) )
71, 6syl5ibcom 155 . . . 4  |-  ( A  e.  RR  ->  ( A  =  B  ->  -.  B  <  A ) )
84, 7jcad 307 . . 3  |-  ( A  e.  RR  ->  ( A  =  B  ->  ( -.  A  <  B  /\  -.  B  <  A
) ) )
98adantr 276 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
10 ioran 753 . . 3  |-  ( -.  ( A  <  B  \/  B  <  A )  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) )
11 axapti 8058 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <  B  \/  B  <  A ) )  ->  A  =  B )
12113expia 1207 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  ( A  <  B  \/  B  <  A )  ->  A  =  B ) )
1310, 12biimtrrid 153 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -.  A  <  B  /\  -.  B  <  A )  ->  A  =  B ) )
149, 13impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2160   class class class wbr 4018   RRcr 7840    < clt 8022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-pre-ltirr 7953  ax-pre-apti 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4650  df-pnf 8024  df-mnf 8025  df-ltxr 8027
This theorem is referenced by:  letri3  8068  lttri3i  8085  lttri3d  8102  inelr  8571  lbinf  8935  suprubex  8938  suprlubex  8939  suprleubex  8941  sup3exmid  8944  suprzclex  9381  infrenegsupex  9624  supminfex  9627  infregelbex  9628  xrlttri3  9827  maxleim  11246  maxabs  11250  maxleast  11254  zsupcl  11980  zssinfcl  11981  infssuzledc  11983  suprzcl2dc  11988  dvdslegcd  11997  bezoutlemsup  12042  dfgcd2  12047  lcmgcdlem  12109  suplociccex  14560  pilem3  14661  taupi  15280
  Copyright terms: Public domain W3C validator