ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri3 Unicode version

Theorem lttri3 7851
Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.)
Assertion
Ref Expression
lttri3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )

Proof of Theorem lttri3
StepHypRef Expression
1 ltnr 7848 . . . . 5  |-  ( A  e.  RR  ->  -.  A  <  A )
2 breq2 3933 . . . . . 6  |-  ( A  =  B  ->  ( A  <  A  <->  A  <  B ) )
32notbid 656 . . . . 5  |-  ( A  =  B  ->  ( -.  A  <  A  <->  -.  A  <  B ) )
41, 3syl5ibcom 154 . . . 4  |-  ( A  e.  RR  ->  ( A  =  B  ->  -.  A  <  B ) )
5 breq1 3932 . . . . . 6  |-  ( A  =  B  ->  ( A  <  A  <->  B  <  A ) )
65notbid 656 . . . . 5  |-  ( A  =  B  ->  ( -.  A  <  A  <->  -.  B  <  A ) )
71, 6syl5ibcom 154 . . . 4  |-  ( A  e.  RR  ->  ( A  =  B  ->  -.  B  <  A ) )
84, 7jcad 305 . . 3  |-  ( A  e.  RR  ->  ( A  =  B  ->  ( -.  A  <  B  /\  -.  B  <  A
) ) )
98adantr 274 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
10 ioran 741 . . 3  |-  ( -.  ( A  <  B  \/  B  <  A )  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) )
11 axapti 7842 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <  B  \/  B  <  A ) )  ->  A  =  B )
12113expia 1183 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  ( A  <  B  \/  B  <  A )  ->  A  =  B ) )
1310, 12syl5bir 152 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -.  A  <  B  /\  -.  B  <  A )  ->  A  =  B ) )
149, 13impbid 128 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   class class class wbr 3929   RRcr 7626    < clt 7807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-pre-ltirr 7739  ax-pre-apti 7742
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-pnf 7809  df-mnf 7810  df-ltxr 7812
This theorem is referenced by:  letri3  7852  lttri3i  7868  lttri3d  7885  inelr  8353  lbinf  8713  suprubex  8716  suprlubex  8717  suprleubex  8719  sup3exmid  8722  suprzclex  9156  infrenegsupex  9396  supminfex  9399  xrlttri3  9590  maxleim  10984  maxabs  10988  maxleast  10992  zsupcl  11646  zssinfcl  11647  infssuzledc  11649  dvdslegcd  11659  bezoutlemsup  11703  dfgcd2  11708  lcmgcdlem  11764  suplociccex  12781  pilem3  12880  taupi  13295
  Copyright terms: Public domain W3C validator