ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz1f1o Unicode version

Theorem fz1f1o 11557
Description: A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.)
Assertion
Ref Expression
fz1f1o  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
Distinct variable group:    A, f

Proof of Theorem fz1f1o
StepHypRef Expression
1 hashcl 10890 . . . 4  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
2 elnn0 9268 . . . 4  |-  ( ( `  A )  e.  NN0  <->  (
( `  A )  e.  NN  \/  ( `  A
)  =  0 ) )
31, 2sylib 122 . . 3  |-  ( A  e.  Fin  ->  (
( `  A )  e.  NN  \/  ( `  A
)  =  0 ) )
43orcomd 730 . 2  |-  ( A  e.  Fin  ->  (
( `  A )  =  0  \/  ( `  A
)  e.  NN ) )
5 fihasheq0 10902 . . 3  |-  ( A  e.  Fin  ->  (
( `  A )  =  0  <->  A  =  (/) ) )
6 isfinite4im 10901 . . . . 5  |-  ( A  e.  Fin  ->  (
1 ... ( `  A
) )  ~~  A
)
7 bren 6815 . . . . 5  |-  ( ( 1 ... ( `  A
) )  ~~  A  <->  E. f  f : ( 1 ... ( `  A
) ) -1-1-onto-> A )
86, 7sylib 122 . . . 4  |-  ( A  e.  Fin  ->  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A )
98biantrud 304 . . 3  |-  ( A  e.  Fin  ->  (
( `  A )  e.  NN  <->  ( ( `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
105, 9orbi12d 794 . 2  |-  ( A  e.  Fin  ->  (
( ( `  A
)  =  0  \/  ( `  A )  e.  NN )  <->  ( A  =  (/)  \/  ( ( `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) ) ) )
114, 10mpbid 147 1  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1506    e. wcel 2167   (/)c0 3451   class class class wbr 4034   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925    ~~ cen 6806   Fincfn 6808   0cc0 7896   1c1 7897   NNcn 9007   NN0cn0 9266   ...cfz 10100  ♯chash 10884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-ihash 10885
This theorem is referenced by:  isumz  11571  fsumf1o  11572  fisumss  11574  fsumcl2lem  11580  fsumadd  11588  fsummulc2  11630  prod1dc  11768  fprodf1o  11770  fprodssdc  11772  fprodmul  11773
  Copyright terms: Public domain W3C validator