ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmultr2 Unicode version

Theorem dvdsmultr2 11773
Description: If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
dvdsmultr2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  N  ->  K  ||  ( M  x.  N
) ) )

Proof of Theorem dvdsmultr2
StepHypRef Expression
1 dvdsmul2 11754 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M  x.  N ) )
21biantrud 302 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  N  <->  ( K  ||  N  /\  N  ||  ( M  x.  N ) ) ) )
323adant1 1005 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  N  <->  ( K  ||  N  /\  N  ||  ( M  x.  N
) ) ) )
4 simp1 987 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
5 simp3 989 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
6 zmulcl 9244 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
763adant1 1005 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  e.  ZZ )
8 dvdstr 11768 . . 3  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( K  ||  N  /\  N  ||  ( M  x.  N ) )  ->  K  ||  ( M  x.  N )
) )
94, 5, 7, 8syl3anc 1228 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  N  /\  N  ||  ( M  x.  N ) )  ->  K  ||  ( M  x.  N )
) )
103, 9sylbid 149 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  N  ->  K  ||  ( M  x.  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136   class class class wbr 3982  (class class class)co 5842    x. cmul 7758   ZZcz 9191    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-dvds 11728
This theorem is referenced by:  ordvdsmul  11774  bezoutlemstep  11930  mulgcddvds  12026  lgsdir2  13574
  Copyright terms: Public domain W3C validator