ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnle1eq1 Unicode version

Theorem nnle1eq1 9031
Description: A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.)
Assertion
Ref Expression
nnle1eq1  |-  ( A  e.  NN  ->  ( A  <_  1  <->  A  = 
1 ) )

Proof of Theorem nnle1eq1
StepHypRef Expression
1 nnge1 9030 . . 3  |-  ( A  e.  NN  ->  1  <_  A )
21biantrud 304 . 2  |-  ( A  e.  NN  ->  ( A  <_  1  <->  ( A  <_  1  /\  1  <_  A ) ) )
3 nnre 9014 . . 3  |-  ( A  e.  NN  ->  A  e.  RR )
4 1re 8042 . . 3  |-  1  e.  RR
5 letri3 8124 . . 3  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  =  1  <-> 
( A  <_  1  /\  1  <_  A ) ) )
63, 4, 5sylancl 413 . 2  |-  ( A  e.  NN  ->  ( A  =  1  <->  ( A  <_  1  /\  1  <_  A ) ) )
72, 6bitr4d 191 1  |-  ( A  e.  NN  ->  ( A  <_  1  <->  A  = 
1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034   RRcr 7895   1c1 7897    <_ cle 8079   NNcn 9007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-iota 5220  df-fv 5267  df-ov 5928  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-inn 9008
This theorem is referenced by:  gcd1  12179  bezoutr1  12225  rpdvds  12292  isprm6  12340  qden1elz  12398  phimullem  12418  pockthlem  12550  znidomb  14290  zabsle1  15324  2sqlem8a  15447  2sqlem8  15448
  Copyright terms: Public domain W3C validator