ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnle1eq1 Unicode version

Theorem nnle1eq1 8916
Description: A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.)
Assertion
Ref Expression
nnle1eq1  |-  ( A  e.  NN  ->  ( A  <_  1  <->  A  = 
1 ) )

Proof of Theorem nnle1eq1
StepHypRef Expression
1 nnge1 8915 . . 3  |-  ( A  e.  NN  ->  1  <_  A )
21biantrud 304 . 2  |-  ( A  e.  NN  ->  ( A  <_  1  <->  ( A  <_  1  /\  1  <_  A ) ) )
3 nnre 8899 . . 3  |-  ( A  e.  NN  ->  A  e.  RR )
4 1re 7931 . . 3  |-  1  e.  RR
5 letri3 8012 . . 3  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  =  1  <-> 
( A  <_  1  /\  1  <_  A ) ) )
63, 4, 5sylancl 413 . 2  |-  ( A  e.  NN  ->  ( A  =  1  <->  ( A  <_  1  /\  1  <_  A ) ) )
72, 6bitr4d 191 1  |-  ( A  e.  NN  ->  ( A  <_  1  <->  A  = 
1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   class class class wbr 3998   RRcr 7785   1c1 7787    <_ cle 7967   NNcn 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-iota 5170  df-fv 5216  df-ov 5868  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-inn 8893
This theorem is referenced by:  gcd1  11955  bezoutr1  12001  rpdvds  12066  isprm6  12114  qden1elz  12172  phimullem  12192  pockthlem  12321  zabsle1  13980  2sqlem8a  14038  2sqlem8  14039
  Copyright terms: Public domain W3C validator