ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnle1eq1 Unicode version

Theorem nnle1eq1 8767
Description: A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.)
Assertion
Ref Expression
nnle1eq1  |-  ( A  e.  NN  ->  ( A  <_  1  <->  A  = 
1 ) )

Proof of Theorem nnle1eq1
StepHypRef Expression
1 nnge1 8766 . . 3  |-  ( A  e.  NN  ->  1  <_  A )
21biantrud 302 . 2  |-  ( A  e.  NN  ->  ( A  <_  1  <->  ( A  <_  1  /\  1  <_  A ) ) )
3 nnre 8750 . . 3  |-  ( A  e.  NN  ->  A  e.  RR )
4 1re 7788 . . 3  |-  1  e.  RR
5 letri3 7868 . . 3  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  =  1  <-> 
( A  <_  1  /\  1  <_  A ) ) )
63, 4, 5sylancl 410 . 2  |-  ( A  e.  NN  ->  ( A  =  1  <->  ( A  <_  1  /\  1  <_  A ) ) )
72, 6bitr4d 190 1  |-  ( A  e.  NN  ->  ( A  <_  1  <->  A  = 
1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   class class class wbr 3936   RRcr 7642   1c1 7644    <_ cle 7824   NNcn 8743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1re 7737  ax-addrcl 7740  ax-0lt1 7749  ax-0id 7751  ax-rnegex 7752  ax-pre-ltirr 7755  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-xp 4552  df-cnv 4554  df-iota 5095  df-fv 5138  df-ov 5784  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-inn 8744
This theorem is referenced by:  gcd1  11709  bezoutr1  11755  rpdvds  11814  isprm6  11859  qden1elz  11917  phimullem  11935
  Copyright terms: Public domain W3C validator