ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0le0eq0 Unicode version

Theorem nn0le0eq0 9239
Description: A nonnegative integer is less than or equal to zero iff it is equal to zero. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
nn0le0eq0  |-  ( N  e.  NN0  ->  ( N  <_  0  <->  N  = 
0 ) )

Proof of Theorem nn0le0eq0
StepHypRef Expression
1 nn0ge0 9236 . . 3  |-  ( N  e.  NN0  ->  0  <_  N )
21biantrud 304 . 2  |-  ( N  e.  NN0  ->  ( N  <_  0  <->  ( N  <_  0  /\  0  <_  N ) ) )
3 nn0re 9220 . . 3  |-  ( N  e.  NN0  ->  N  e.  RR )
4 0re 7992 . . 3  |-  0  e.  RR
5 letri3 8073 . . 3  |-  ( ( N  e.  RR  /\  0  e.  RR )  ->  ( N  =  0  <-> 
( N  <_  0  /\  0  <_  N ) ) )
63, 4, 5sylancl 413 . 2  |-  ( N  e.  NN0  ->  ( N  =  0  <->  ( N  <_  0  /\  0  <_  N ) ) )
72, 6bitr4d 191 1  |-  ( N  e.  NN0  ->  ( N  <_  0  <->  N  = 
0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   class class class wbr 4021   RRcr 7845   0cc0 7846    <_ cle 8028   NN0cn0 9211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-xp 4653  df-cnv 4655  df-iota 5199  df-fv 5246  df-ov 5903  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-inn 8955  df-n0 9212
This theorem is referenced by:  facwordi  10761  algcvgblem  12092  pcpre1  12335
  Copyright terms: Public domain W3C validator