ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncnpi Unicode version

Theorem cncnpi 14548
Description: A continuous function is continuous at all points. One direction of Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnsscnp.1  |-  X  = 
U. J
Assertion
Ref Expression
cncnpi  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  F  e.  ( ( J  CnP  K ) `
 A ) )

Proof of Theorem cncnpi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsscnp.1 . . . 4  |-  X  = 
U. J
2 eqid 2196 . . . 4  |-  U. K  =  U. K
31, 2cnf 14524 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> U. K )
43adantr 276 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  F : X --> U. K
)
5 cnima 14540 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  y  e.  K )  ->  ( `' F "
y )  e.  J
)
65ad2ant2r 509 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  -> 
( `' F "
y )  e.  J
)
7 simpr 110 . . . . . . 7  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  A  e.  X )
87adantr 276 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  ->  A  e.  X )
9 simprr 531 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  -> 
( F `  A
)  e.  y )
103ad2antrr 488 . . . . . . 7  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  ->  F : X --> U. K
)
11 ffn 5410 . . . . . . 7  |-  ( F : X --> U. K  ->  F  Fn  X )
12 elpreima 5684 . . . . . . 7  |-  ( F  Fn  X  ->  ( A  e.  ( `' F " y )  <->  ( A  e.  X  /\  ( F `  A )  e.  y ) ) )
1310, 11, 123syl 17 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  -> 
( A  e.  ( `' F " y )  <-> 
( A  e.  X  /\  ( F `  A
)  e.  y ) ) )
148, 9, 13mpbir2and 946 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  ->  A  e.  ( `' F " y ) )
15 eqimss 3238 . . . . . . . 8  |-  ( x  =  ( `' F " y )  ->  x  C_  ( `' F "
y ) )
1615biantrud 304 . . . . . . 7  |-  ( x  =  ( `' F " y )  ->  ( A  e.  x  <->  ( A  e.  x  /\  x  C_  ( `' F "
y ) ) ) )
17 eleq2 2260 . . . . . . 7  |-  ( x  =  ( `' F " y )  ->  ( A  e.  x  <->  A  e.  ( `' F " y ) ) )
1816, 17bitr3d 190 . . . . . 6  |-  ( x  =  ( `' F " y )  ->  (
( A  e.  x  /\  x  C_  ( `' F " y ) )  <->  A  e.  ( `' F " y ) ) )
1918rspcev 2868 . . . . 5  |-  ( ( ( `' F "
y )  e.  J  /\  A  e.  ( `' F " y ) )  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F "
y ) ) )
206, 14, 19syl2anc 411 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F " y ) ) )
2120expr 375 . . 3  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  y  e.  K )  ->  (
( F `  A
)  e.  y  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F " y ) ) ) )
2221ralrimiva 2570 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  A. y  e.  K  ( ( F `  A )  e.  y  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F " y ) ) ) )
23 cntop1 14521 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
2423adantr 276 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  J  e.  Top )
251toptopon 14338 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
2624, 25sylib 122 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  J  e.  (TopOn `  X ) )
27 cntop2 14522 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
2827adantr 276 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  K  e.  Top )
292toptopon 14338 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3028, 29sylib 122 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  K  e.  (TopOn `  U. K ) )
31 iscnp3 14523 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> U. K  /\  A. y  e.  K  ( ( F `  A )  e.  y  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F "
y ) ) ) ) ) )
3226, 30, 7, 31syl3anc 1249 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  ( F  e.  ( ( J  CnP  K
) `  A )  <->  ( F : X --> U. K  /\  A. y  e.  K  ( ( F `  A )  e.  y  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F " y ) ) ) ) ) )
334, 22, 32mpbir2and 946 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  F  e.  ( ( J  CnP  K ) `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   U.cuni 3840   `'ccnv 4663   "cima 4667    Fn wfn 5254   -->wf 5255   ` cfv 5259  (class class class)co 5925   Topctop 14317  TopOnctopon 14330    Cn ccn 14505    CnP ccnp 14506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-top 14318  df-topon 14331  df-cn 14508  df-cnp 14509
This theorem is referenced by:  cnsscnp  14549  cncnp  14550  lmcn  14571  dvcnp2cntop  15019  dvaddxxbr  15021  dvmulxxbr  15022  dvcoapbr  15027  dvcjbr  15028
  Copyright terms: Public domain W3C validator