| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncnpi | Unicode version | ||
| Description: A continuous function is continuous at all points. One direction of Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnsscnp.1 |
|
| Ref | Expression |
|---|---|
| cncnpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsscnp.1 |
. . . 4
| |
| 2 | eqid 2196 |
. . . 4
| |
| 3 | 1, 2 | cnf 14440 |
. . 3
|
| 4 | 3 | adantr 276 |
. 2
|
| 5 | cnima 14456 |
. . . . . 6
| |
| 6 | 5 | ad2ant2r 509 |
. . . . 5
|
| 7 | simpr 110 |
. . . . . . 7
| |
| 8 | 7 | adantr 276 |
. . . . . 6
|
| 9 | simprr 531 |
. . . . . 6
| |
| 10 | 3 | ad2antrr 488 |
. . . . . . 7
|
| 11 | ffn 5407 |
. . . . . . 7
| |
| 12 | elpreima 5681 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | 3syl 17 |
. . . . . 6
|
| 14 | 8, 9, 13 | mpbir2and 946 |
. . . . 5
|
| 15 | eqimss 3237 |
. . . . . . . 8
| |
| 16 | 15 | biantrud 304 |
. . . . . . 7
|
| 17 | eleq2 2260 |
. . . . . . 7
| |
| 18 | 16, 17 | bitr3d 190 |
. . . . . 6
|
| 19 | 18 | rspcev 2868 |
. . . . 5
|
| 20 | 6, 14, 19 | syl2anc 411 |
. . . 4
|
| 21 | 20 | expr 375 |
. . 3
|
| 22 | 21 | ralrimiva 2570 |
. 2
|
| 23 | cntop1 14437 |
. . . . 5
| |
| 24 | 23 | adantr 276 |
. . . 4
|
| 25 | 1 | toptopon 14254 |
. . . 4
|
| 26 | 24, 25 | sylib 122 |
. . 3
|
| 27 | cntop2 14438 |
. . . . 5
| |
| 28 | 27 | adantr 276 |
. . . 4
|
| 29 | 2 | toptopon 14254 |
. . . 4
|
| 30 | 28, 29 | sylib 122 |
. . 3
|
| 31 | iscnp3 14439 |
. . 3
| |
| 32 | 26, 30, 7, 31 | syl3anc 1249 |
. 2
|
| 33 | 4, 22, 32 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-top 14234 df-topon 14247 df-cn 14424 df-cnp 14425 |
| This theorem is referenced by: cnsscnp 14465 cncnp 14466 lmcn 14487 dvcnp2cntop 14935 dvaddxxbr 14937 dvmulxxbr 14938 dvcoapbr 14943 dvcjbr 14944 |
| Copyright terms: Public domain | W3C validator |