| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncnpi | Unicode version | ||
| Description: A continuous function is continuous at all points. One direction of Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnsscnp.1 |
|
| Ref | Expression |
|---|---|
| cncnpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsscnp.1 |
. . . 4
| |
| 2 | eqid 2207 |
. . . 4
| |
| 3 | 1, 2 | cnf 14791 |
. . 3
|
| 4 | 3 | adantr 276 |
. 2
|
| 5 | cnima 14807 |
. . . . . 6
| |
| 6 | 5 | ad2ant2r 509 |
. . . . 5
|
| 7 | simpr 110 |
. . . . . . 7
| |
| 8 | 7 | adantr 276 |
. . . . . 6
|
| 9 | simprr 531 |
. . . . . 6
| |
| 10 | 3 | ad2antrr 488 |
. . . . . . 7
|
| 11 | ffn 5445 |
. . . . . . 7
| |
| 12 | elpreima 5722 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | 3syl 17 |
. . . . . 6
|
| 14 | 8, 9, 13 | mpbir2and 947 |
. . . . 5
|
| 15 | eqimss 3255 |
. . . . . . . 8
| |
| 16 | 15 | biantrud 304 |
. . . . . . 7
|
| 17 | eleq2 2271 |
. . . . . . 7
| |
| 18 | 16, 17 | bitr3d 190 |
. . . . . 6
|
| 19 | 18 | rspcev 2884 |
. . . . 5
|
| 20 | 6, 14, 19 | syl2anc 411 |
. . . 4
|
| 21 | 20 | expr 375 |
. . 3
|
| 22 | 21 | ralrimiva 2581 |
. 2
|
| 23 | cntop1 14788 |
. . . . 5
| |
| 24 | 23 | adantr 276 |
. . . 4
|
| 25 | 1 | toptopon 14605 |
. . . 4
|
| 26 | 24, 25 | sylib 122 |
. . 3
|
| 27 | cntop2 14789 |
. . . . 5
| |
| 28 | 27 | adantr 276 |
. . . 4
|
| 29 | 2 | toptopon 14605 |
. . . 4
|
| 30 | 28, 29 | sylib 122 |
. . 3
|
| 31 | iscnp3 14790 |
. . 3
| |
| 32 | 26, 30, 7, 31 | syl3anc 1250 |
. 2
|
| 33 | 4, 22, 32 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-top 14585 df-topon 14598 df-cn 14775 df-cnp 14776 |
| This theorem is referenced by: cnsscnp 14816 cncnp 14817 lmcn 14838 dvcnp2cntop 15286 dvaddxxbr 15288 dvmulxxbr 15289 dvcoapbr 15294 dvcjbr 15295 |
| Copyright terms: Public domain | W3C validator |