ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncnpi Unicode version

Theorem cncnpi 14902
Description: A continuous function is continuous at all points. One direction of Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnsscnp.1  |-  X  = 
U. J
Assertion
Ref Expression
cncnpi  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  F  e.  ( ( J  CnP  K ) `
 A ) )

Proof of Theorem cncnpi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsscnp.1 . . . 4  |-  X  = 
U. J
2 eqid 2229 . . . 4  |-  U. K  =  U. K
31, 2cnf 14878 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> U. K )
43adantr 276 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  F : X --> U. K
)
5 cnima 14894 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  y  e.  K )  ->  ( `' F "
y )  e.  J
)
65ad2ant2r 509 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  -> 
( `' F "
y )  e.  J
)
7 simpr 110 . . . . . . 7  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  A  e.  X )
87adantr 276 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  ->  A  e.  X )
9 simprr 531 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  -> 
( F `  A
)  e.  y )
103ad2antrr 488 . . . . . . 7  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  ->  F : X --> U. K
)
11 ffn 5473 . . . . . . 7  |-  ( F : X --> U. K  ->  F  Fn  X )
12 elpreima 5754 . . . . . . 7  |-  ( F  Fn  X  ->  ( A  e.  ( `' F " y )  <->  ( A  e.  X  /\  ( F `  A )  e.  y ) ) )
1310, 11, 123syl 17 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  -> 
( A  e.  ( `' F " y )  <-> 
( A  e.  X  /\  ( F `  A
)  e.  y ) ) )
148, 9, 13mpbir2and 950 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  ->  A  e.  ( `' F " y ) )
15 eqimss 3278 . . . . . . . 8  |-  ( x  =  ( `' F " y )  ->  x  C_  ( `' F "
y ) )
1615biantrud 304 . . . . . . 7  |-  ( x  =  ( `' F " y )  ->  ( A  e.  x  <->  ( A  e.  x  /\  x  C_  ( `' F "
y ) ) ) )
17 eleq2 2293 . . . . . . 7  |-  ( x  =  ( `' F " y )  ->  ( A  e.  x  <->  A  e.  ( `' F " y ) ) )
1816, 17bitr3d 190 . . . . . 6  |-  ( x  =  ( `' F " y )  ->  (
( A  e.  x  /\  x  C_  ( `' F " y ) )  <->  A  e.  ( `' F " y ) ) )
1918rspcev 2907 . . . . 5  |-  ( ( ( `' F "
y )  e.  J  /\  A  e.  ( `' F " y ) )  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F "
y ) ) )
206, 14, 19syl2anc 411 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F " y ) ) )
2120expr 375 . . 3  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  y  e.  K )  ->  (
( F `  A
)  e.  y  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F " y ) ) ) )
2221ralrimiva 2603 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  A. y  e.  K  ( ( F `  A )  e.  y  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F " y ) ) ) )
23 cntop1 14875 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
2423adantr 276 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  J  e.  Top )
251toptopon 14692 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
2624, 25sylib 122 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  J  e.  (TopOn `  X ) )
27 cntop2 14876 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
2827adantr 276 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  K  e.  Top )
292toptopon 14692 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3028, 29sylib 122 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  K  e.  (TopOn `  U. K ) )
31 iscnp3 14877 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> U. K  /\  A. y  e.  K  ( ( F `  A )  e.  y  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F "
y ) ) ) ) ) )
3226, 30, 7, 31syl3anc 1271 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  ( F  e.  ( ( J  CnP  K
) `  A )  <->  ( F : X --> U. K  /\  A. y  e.  K  ( ( F `  A )  e.  y  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F " y ) ) ) ) ) )
334, 22, 32mpbir2and 950 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  F  e.  ( ( J  CnP  K ) `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   U.cuni 3888   `'ccnv 4718   "cima 4722    Fn wfn 5313   -->wf 5314   ` cfv 5318  (class class class)co 6001   Topctop 14671  TopOnctopon 14684    Cn ccn 14859    CnP ccnp 14860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-top 14672  df-topon 14685  df-cn 14862  df-cnp 14863
This theorem is referenced by:  cnsscnp  14903  cncnp  14904  lmcn  14925  dvcnp2cntop  15373  dvaddxxbr  15375  dvmulxxbr  15376  dvcoapbr  15381  dvcjbr  15382
  Copyright terms: Public domain W3C validator