Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcopeq1a | Unicode version |
Description: Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 2956 that avoids the existential quantifiers of copsexg 4217). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
sbcopeq1a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2725 | . . . . 5 | |
2 | vex 2725 | . . . . 5 | |
3 | 1, 2 | op2ndd 6110 | . . . 4 |
4 | 3 | eqcomd 2170 | . . 3 |
5 | sbceq1a 2956 | . . 3 | |
6 | 4, 5 | syl 14 | . 2 |
7 | 1, 2 | op1std 6109 | . . . 4 |
8 | 7 | eqcomd 2170 | . . 3 |
9 | sbceq1a 2956 | . . 3 | |
10 | 8, 9 | syl 14 | . 2 |
11 | 6, 10 | bitr2d 188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1342 wsbc 2947 cop 3574 cfv 5183 c1st 6099 c2nd 6100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-v 2724 df-sbc 2948 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-iota 5148 df-fun 5185 df-fv 5191 df-1st 6101 df-2nd 6102 |
This theorem is referenced by: dfopab2 6150 dfoprab3s 6151 |
Copyright terms: Public domain | W3C validator |