ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcopeq1a Unicode version

Theorem sbcopeq1a 6202
Description: Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 2984 that avoids the existential quantifiers of copsexg 4256). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
sbcopeq1a  |-  ( A  =  <. x ,  y
>.  ->  ( [. ( 1st `  A )  /  x ]. [. ( 2nd `  A )  /  y ]. ph  <->  ph ) )

Proof of Theorem sbcopeq1a
StepHypRef Expression
1 vex 2752 . . . . 5  |-  x  e. 
_V
2 vex 2752 . . . . 5  |-  y  e. 
_V
31, 2op2ndd 6164 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 2nd `  A
)  =  y )
43eqcomd 2193 . . 3  |-  ( A  =  <. x ,  y
>.  ->  y  =  ( 2nd `  A ) )
5 sbceq1a 2984 . . 3  |-  ( y  =  ( 2nd `  A
)  ->  ( ph  <->  [. ( 2nd `  A
)  /  y ]. ph ) )
64, 5syl 14 . 2  |-  ( A  =  <. x ,  y
>.  ->  ( ph  <->  [. ( 2nd `  A )  /  y ]. ph ) )
71, 2op1std 6163 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  x )
87eqcomd 2193 . . 3  |-  ( A  =  <. x ,  y
>.  ->  x  =  ( 1st `  A ) )
9 sbceq1a 2984 . . 3  |-  ( x  =  ( 1st `  A
)  ->  ( [. ( 2nd `  A )  /  y ]. ph  <->  [. ( 1st `  A )  /  x ]. [. ( 2nd `  A
)  /  y ]. ph ) )
108, 9syl 14 . 2  |-  ( A  =  <. x ,  y
>.  ->  ( [. ( 2nd `  A )  / 
y ]. ph  <->  [. ( 1st `  A )  /  x ]. [. ( 2nd `  A
)  /  y ]. ph ) )
116, 10bitr2d 189 1  |-  ( A  =  <. x ,  y
>.  ->  ( [. ( 1st `  A )  /  x ]. [. ( 2nd `  A )  /  y ]. ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1363   [.wsbc 2974   <.cop 3607   ` cfv 5228   1stc1st 6153   2ndc2nd 6154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-iota 5190  df-fun 5230  df-fv 5236  df-1st 6155  df-2nd 6156
This theorem is referenced by:  dfopab2  6204  dfoprab3s  6205
  Copyright terms: Public domain W3C validator