ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iser3shft Unicode version

Theorem iser3shft 11122
Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
iser3shft.ex  |-  ( ph  ->  F  e.  V )
iser3shft.m  |-  ( ph  ->  M  e.  ZZ )
iser3shft.n  |-  ( ph  ->  N  e.  ZZ )
iser3shft.fm  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iser3shft.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
iser3shft  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  ~~>  A  <->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  ~~>  A ) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    ph, x, y
Allowed substitution hints:    A( x, y)    V( x, y)

Proof of Theorem iser3shft
StepHypRef Expression
1 iser3shft.ex . . . . 5  |-  ( ph  ->  F  e.  V )
2 iser3shft.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
3 iser3shft.n . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
42, 3zaddcld 9184 . . . . 5  |-  ( ph  ->  ( M  +  N
)  e.  ZZ )
52zcnd 9181 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
63zcnd 9181 . . . . . . . . . 10  |-  ( ph  ->  N  e.  CC )
75, 6pncand 8081 . . . . . . . . 9  |-  ( ph  ->  ( ( M  +  N )  -  N
)  =  M )
87fveq2d 5425 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  ( ( M  +  N )  -  N ) )  =  ( ZZ>= `  M )
)
98eleq2d 2209 . . . . . . 7  |-  ( ph  ->  ( x  e.  (
ZZ>= `  ( ( M  +  N )  -  N ) )  <->  x  e.  ( ZZ>= `  M )
) )
109pm5.32i 449 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( ( M  +  N )  -  N ) ) )  <-> 
( ph  /\  x  e.  ( ZZ>= `  M )
) )
11 iser3shft.fm . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
1210, 11sylbi 120 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( ( M  +  N )  -  N ) ) )  ->  ( F `  x )  e.  S
)
13 iser3shft.pl . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
141, 4, 3, 12, 13seq3shft 10617 . . . 4  |-  ( ph  ->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  =  (  seq ( ( M  +  N )  -  N ) (  .+  ,  F )  shift  N ) )
157seqeq1d 10231 . . . . 5  |-  ( ph  ->  seq ( ( M  +  N )  -  N ) (  .+  ,  F )  =  seq M (  .+  ,  F ) )
1615oveq1d 5789 . . . 4  |-  ( ph  ->  (  seq ( ( M  +  N )  -  N ) ( 
.+  ,  F ) 
shift  N )  =  (  seq M (  .+  ,  F )  shift  N ) )
1714, 16eqtrd 2172 . . 3  |-  ( ph  ->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  =  (  seq M (  .+  ,  F )  shift  N ) )
1817breq1d 3939 . 2  |-  ( ph  ->  (  seq ( M  +  N ) ( 
.+  ,  ( F 
shift  N ) )  ~~>  A  <->  (  seq M (  .+  ,  F )  shift  N )  ~~>  A ) )
19 seqex 10227 . . 3  |-  seq M
(  .+  ,  F
)  e.  _V
20 climshft 11080 . . 3  |-  ( ( N  e.  ZZ  /\  seq M (  .+  ,  F )  e.  _V )  ->  ( (  seq M (  .+  ,  F )  shift  N )  ~~>  A  <->  seq M (  .+  ,  F )  ~~>  A ) )
213, 19, 20sylancl 409 . 2  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
)  shift  N )  ~~>  A  <->  seq M ( 
.+  ,  F )  ~~>  A ) )
2218, 21bitr2d 188 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  ~~>  A  <->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   _Vcvv 2686   class class class wbr 3929   ` cfv 5123  (class class class)co 5774    + caddc 7630    - cmin 7940   ZZcz 9061   ZZ>=cuz 9333    seqcseq 10225    shift cshi 10593    ~~> cli 11054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334  df-fz 9798  df-seqfrec 10226  df-shft 10594  df-clim 11055
This theorem is referenced by:  isumshft  11266
  Copyright terms: Public domain W3C validator