ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iser3shft Unicode version

Theorem iser3shft 11287
Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
iser3shft.ex  |-  ( ph  ->  F  e.  V )
iser3shft.m  |-  ( ph  ->  M  e.  ZZ )
iser3shft.n  |-  ( ph  ->  N  e.  ZZ )
iser3shft.fm  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iser3shft.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
iser3shft  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  ~~>  A  <->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  ~~>  A ) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    ph, x, y
Allowed substitution hints:    A( x, y)    V( x, y)

Proof of Theorem iser3shft
StepHypRef Expression
1 iser3shft.ex . . . . 5  |-  ( ph  ->  F  e.  V )
2 iser3shft.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
3 iser3shft.n . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
42, 3zaddcld 9317 . . . . 5  |-  ( ph  ->  ( M  +  N
)  e.  ZZ )
52zcnd 9314 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
63zcnd 9314 . . . . . . . . . 10  |-  ( ph  ->  N  e.  CC )
75, 6pncand 8210 . . . . . . . . 9  |-  ( ph  ->  ( ( M  +  N )  -  N
)  =  M )
87fveq2d 5490 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  ( ( M  +  N )  -  N ) )  =  ( ZZ>= `  M )
)
98eleq2d 2236 . . . . . . 7  |-  ( ph  ->  ( x  e.  (
ZZ>= `  ( ( M  +  N )  -  N ) )  <->  x  e.  ( ZZ>= `  M )
) )
109pm5.32i 450 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( ( M  +  N )  -  N ) ) )  <-> 
( ph  /\  x  e.  ( ZZ>= `  M )
) )
11 iser3shft.fm . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
1210, 11sylbi 120 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( ( M  +  N )  -  N ) ) )  ->  ( F `  x )  e.  S
)
13 iser3shft.pl . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
141, 4, 3, 12, 13seq3shft 10780 . . . 4  |-  ( ph  ->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  =  (  seq ( ( M  +  N )  -  N ) (  .+  ,  F )  shift  N ) )
157seqeq1d 10386 . . . . 5  |-  ( ph  ->  seq ( ( M  +  N )  -  N ) (  .+  ,  F )  =  seq M (  .+  ,  F ) )
1615oveq1d 5857 . . . 4  |-  ( ph  ->  (  seq ( ( M  +  N )  -  N ) ( 
.+  ,  F ) 
shift  N )  =  (  seq M (  .+  ,  F )  shift  N ) )
1714, 16eqtrd 2198 . . 3  |-  ( ph  ->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  =  (  seq M (  .+  ,  F )  shift  N ) )
1817breq1d 3992 . 2  |-  ( ph  ->  (  seq ( M  +  N ) ( 
.+  ,  ( F 
shift  N ) )  ~~>  A  <->  (  seq M (  .+  ,  F )  shift  N )  ~~>  A ) )
19 seqex 10382 . . 3  |-  seq M
(  .+  ,  F
)  e.  _V
20 climshft 11245 . . 3  |-  ( ( N  e.  ZZ  /\  seq M (  .+  ,  F )  e.  _V )  ->  ( (  seq M (  .+  ,  F )  shift  N )  ~~>  A  <->  seq M (  .+  ,  F )  ~~>  A ) )
213, 19, 20sylancl 410 . 2  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
)  shift  N )  ~~>  A  <->  seq M ( 
.+  ,  F )  ~~>  A ) )
2218, 21bitr2d 188 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  ~~>  A  <->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   _Vcvv 2726   class class class wbr 3982   ` cfv 5188  (class class class)co 5842    + caddc 7756    - cmin 8069   ZZcz 9191   ZZ>=cuz 9466    seqcseq 10380    shift cshi 10756    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-seqfrec 10381  df-shft 10757  df-clim 11220
This theorem is referenced by:  isumshft  11431
  Copyright terms: Public domain W3C validator