ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iser3shft Unicode version

Theorem iser3shft 11772
Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
iser3shft.ex  |-  ( ph  ->  F  e.  V )
iser3shft.m  |-  ( ph  ->  M  e.  ZZ )
iser3shft.n  |-  ( ph  ->  N  e.  ZZ )
iser3shft.fm  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iser3shft.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
iser3shft  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  ~~>  A  <->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  ~~>  A ) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    ph, x, y
Allowed substitution hints:    A( x, y)    V( x, y)

Proof of Theorem iser3shft
StepHypRef Expression
1 iser3shft.ex . . . . 5  |-  ( ph  ->  F  e.  V )
2 iser3shft.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
3 iser3shft.n . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
42, 3zaddcld 9534 . . . . 5  |-  ( ph  ->  ( M  +  N
)  e.  ZZ )
52zcnd 9531 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
63zcnd 9531 . . . . . . . . . 10  |-  ( ph  ->  N  e.  CC )
75, 6pncand 8419 . . . . . . . . 9  |-  ( ph  ->  ( ( M  +  N )  -  N
)  =  M )
87fveq2d 5603 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  ( ( M  +  N )  -  N ) )  =  ( ZZ>= `  M )
)
98eleq2d 2277 . . . . . . 7  |-  ( ph  ->  ( x  e.  (
ZZ>= `  ( ( M  +  N )  -  N ) )  <->  x  e.  ( ZZ>= `  M )
) )
109pm5.32i 454 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( ( M  +  N )  -  N ) ) )  <-> 
( ph  /\  x  e.  ( ZZ>= `  M )
) )
11 iser3shft.fm . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
1210, 11sylbi 121 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( ( M  +  N )  -  N ) ) )  ->  ( F `  x )  e.  S
)
13 iser3shft.pl . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
141, 4, 3, 12, 13seq3shft 11264 . . . 4  |-  ( ph  ->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  =  (  seq ( ( M  +  N )  -  N ) (  .+  ,  F )  shift  N ) )
157seqeq1d 10635 . . . . 5  |-  ( ph  ->  seq ( ( M  +  N )  -  N ) (  .+  ,  F )  =  seq M (  .+  ,  F ) )
1615oveq1d 5982 . . . 4  |-  ( ph  ->  (  seq ( ( M  +  N )  -  N ) ( 
.+  ,  F ) 
shift  N )  =  (  seq M (  .+  ,  F )  shift  N ) )
1714, 16eqtrd 2240 . . 3  |-  ( ph  ->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  =  (  seq M (  .+  ,  F )  shift  N ) )
1817breq1d 4069 . 2  |-  ( ph  ->  (  seq ( M  +  N ) ( 
.+  ,  ( F 
shift  N ) )  ~~>  A  <->  (  seq M (  .+  ,  F )  shift  N )  ~~>  A ) )
19 seqex 10631 . . 3  |-  seq M
(  .+  ,  F
)  e.  _V
20 climshft 11730 . . 3  |-  ( ( N  e.  ZZ  /\  seq M (  .+  ,  F )  e.  _V )  ->  ( (  seq M (  .+  ,  F )  shift  N )  ~~>  A  <->  seq M (  .+  ,  F )  ~~>  A ) )
213, 19, 20sylancl 413 . 2  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
)  shift  N )  ~~>  A  <->  seq M ( 
.+  ,  F )  ~~>  A ) )
2218, 21bitr2d 189 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  ~~>  A  <->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178   _Vcvv 2776   class class class wbr 4059   ` cfv 5290  (class class class)co 5967    + caddc 7963    - cmin 8278   ZZcz 9407   ZZ>=cuz 9683    seqcseq 10629    shift cshi 11240    ~~> cli 11704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-seqfrec 10630  df-shft 11241  df-clim 11705
This theorem is referenced by:  isumshft  11916
  Copyright terms: Public domain W3C validator