ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lesub0 Unicode version

Theorem lesub0 8234
Description: Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lesub0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  A  /\  B  <_  ( B  -  A )
)  <->  A  =  0
) )

Proof of Theorem lesub0
StepHypRef Expression
1 0red 7760 . . 3  |-  ( B  e.  RR  ->  0  e.  RR )
2 letri3 7838 . . 3  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A  =  0  <-> 
( A  <_  0  /\  0  <_  A ) ) )
31, 2sylan2 284 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  0  <-> 
( A  <_  0  /\  0  <_  A ) ) )
4 ancom 264 . . 3  |-  ( ( A  <_  0  /\  0  <_  A )  <->  ( 0  <_  A  /\  A  <_  0 ) )
5 simpr 109 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  A  e.  RR )
6 0red 7760 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  0  e.  RR )
7 simpl 108 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  B  e.  RR )
8 lesub2 8212 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  e.  RR  /\  B  e.  RR )  ->  ( A  <_  0  <->  ( B  -  0 )  <_ 
( B  -  A
) ) )
95, 6, 7, 8syl3anc 1216 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( A  <_  0  <->  ( B  -  0 )  <_  ( B  -  A ) ) )
107recnd 7787 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  B  e.  CC )
1110subid1d 8055 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  0 )  =  B )
1211breq1d 3934 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( ( B  - 
0 )  <_  ( B  -  A )  <->  B  <_  ( B  -  A ) ) )
139, 12bitrd 187 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( A  <_  0  <->  B  <_  ( B  -  A ) ) )
1413ancoms 266 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  0  <->  B  <_  ( B  -  A ) ) )
1514anbi2d 459 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  A  /\  A  <_  0
)  <->  ( 0  <_  A  /\  B  <_  ( B  -  A )
) ) )
164, 15syl5bb 191 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_ 
0  /\  0  <_  A )  <->  ( 0  <_  A  /\  B  <_  ( B  -  A )
) ) )
173, 16bitr2d 188 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  A  /\  B  <_  ( B  -  A )
)  <->  A  =  0
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   RRcr 7612   0cc0 7613    <_ cle 7794    - cmin 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929
This theorem is referenced by:  lesub0i  8251
  Copyright terms: Public domain W3C validator