ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssubr Unicode version

Theorem dvdssubr 11846
Description: An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
dvdssubr  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  M 
||  ( N  -  M ) ) )

Proof of Theorem dvdssubr
StepHypRef Expression
1 zsubcl 9294 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  -  M
)  e.  ZZ )
21ancoms 268 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  -  M
)  e.  ZZ )
3 dvdsadd 11843 . . 3  |-  ( ( M  e.  ZZ  /\  ( N  -  M
)  e.  ZZ )  ->  ( M  ||  ( N  -  M
)  <->  M  ||  ( M  +  ( N  -  M ) ) ) )
42, 3syldan 282 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( N  -  M )  <->  M 
||  ( M  +  ( N  -  M
) ) ) )
5 zcn 9258 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  CC )
6 zcn 9258 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  CC )
7 pncan3 8165 . . . 4  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  +  ( N  -  M ) )  =  N )
85, 6, 7syl2an 289 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  ( N  -  M ) )  =  N )
98breq2d 4016 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M  +  ( N  -  M ) )  <->  M  ||  N
) )
104, 9bitr2d 189 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  M 
||  ( N  -  M ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   class class class wbr 4004  (class class class)co 5875   CCcc 7809    + caddc 7814    - cmin 8128   ZZcz 9253    || cdvds 11794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-dvds 11795
This theorem is referenced by:  ndvdsadd  11936
  Copyright terms: Public domain W3C validator