ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsqeq0 Unicode version

Theorem sumsqeq0 10371
Description: Two real numbers are equal to 0 iff their Euclidean norm is. (Contributed by NM, 29-Apr-2005.) (Revised by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
sumsqeq0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =  0  /\  B  =  0 )  <->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  0 ) )

Proof of Theorem sumsqeq0
StepHypRef Expression
1 resqcl 10360 . . . 4  |-  ( A  e.  RR  ->  ( A ^ 2 )  e.  RR )
2 sqge0 10369 . . . 4  |-  ( A  e.  RR  ->  0  <_  ( A ^ 2 ) )
31, 2jca 304 . . 3  |-  ( A  e.  RR  ->  (
( A ^ 2 )  e.  RR  /\  0  <_  ( A ^
2 ) ) )
4 resqcl 10360 . . . 4  |-  ( B  e.  RR  ->  ( B ^ 2 )  e.  RR )
5 sqge0 10369 . . . 4  |-  ( B  e.  RR  ->  0  <_  ( B ^ 2 ) )
64, 5jca 304 . . 3  |-  ( B  e.  RR  ->  (
( B ^ 2 )  e.  RR  /\  0  <_  ( B ^
2 ) ) )
7 add20 8236 . . 3  |-  ( ( ( ( A ^
2 )  e.  RR  /\  0  <_  ( A ^ 2 ) )  /\  ( ( B ^ 2 )  e.  RR  /\  0  <_ 
( B ^ 2 ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  0  <-> 
( ( A ^
2 )  =  0  /\  ( B ^
2 )  =  0 ) ) )
83, 6, 7syl2an 287 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  0  <-> 
( ( A ^
2 )  =  0  /\  ( B ^
2 )  =  0 ) ) )
9 recn 7753 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
10 sqeq0 10356 . . . 4  |-  ( A  e.  CC  ->  (
( A ^ 2 )  =  0  <->  A  =  0 ) )
119, 10syl 14 . . 3  |-  ( A  e.  RR  ->  (
( A ^ 2 )  =  0  <->  A  =  0 ) )
12 recn 7753 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
13 sqeq0 10356 . . . 4  |-  ( B  e.  CC  ->  (
( B ^ 2 )  =  0  <->  B  =  0 ) )
1412, 13syl 14 . . 3  |-  ( B  e.  RR  ->  (
( B ^ 2 )  =  0  <->  B  =  0 ) )
1511, 14bi2anan9 595 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A ^ 2 )  =  0  /\  ( B ^ 2 )  =  0 )  <->  ( A  =  0  /\  B  =  0 ) ) )
168, 15bitr2d 188 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =  0  /\  B  =  0 )  <->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620    + caddc 7623    <_ cle 7801   2c2 8771   ^cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-exp 10293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator