ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsqeq0 Unicode version

Theorem sumsqeq0 10326
Description: Two real numbers are equal to 0 iff their Euclidean norm is. (Contributed by NM, 29-Apr-2005.) (Revised by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
sumsqeq0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =  0  /\  B  =  0 )  <->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  0 ) )

Proof of Theorem sumsqeq0
StepHypRef Expression
1 resqcl 10315 . . . 4  |-  ( A  e.  RR  ->  ( A ^ 2 )  e.  RR )
2 sqge0 10324 . . . 4  |-  ( A  e.  RR  ->  0  <_  ( A ^ 2 ) )
31, 2jca 304 . . 3  |-  ( A  e.  RR  ->  (
( A ^ 2 )  e.  RR  /\  0  <_  ( A ^
2 ) ) )
4 resqcl 10315 . . . 4  |-  ( B  e.  RR  ->  ( B ^ 2 )  e.  RR )
5 sqge0 10324 . . . 4  |-  ( B  e.  RR  ->  0  <_  ( B ^ 2 ) )
64, 5jca 304 . . 3  |-  ( B  e.  RR  ->  (
( B ^ 2 )  e.  RR  /\  0  <_  ( B ^
2 ) ) )
7 add20 8204 . . 3  |-  ( ( ( ( A ^
2 )  e.  RR  /\  0  <_  ( A ^ 2 ) )  /\  ( ( B ^ 2 )  e.  RR  /\  0  <_ 
( B ^ 2 ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  0  <-> 
( ( A ^
2 )  =  0  /\  ( B ^
2 )  =  0 ) ) )
83, 6, 7syl2an 287 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  0  <-> 
( ( A ^
2 )  =  0  /\  ( B ^
2 )  =  0 ) ) )
9 recn 7721 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
10 sqeq0 10311 . . . 4  |-  ( A  e.  CC  ->  (
( A ^ 2 )  =  0  <->  A  =  0 ) )
119, 10syl 14 . . 3  |-  ( A  e.  RR  ->  (
( A ^ 2 )  =  0  <->  A  =  0 ) )
12 recn 7721 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
13 sqeq0 10311 . . . 4  |-  ( B  e.  CC  ->  (
( B ^ 2 )  =  0  <->  B  =  0 ) )
1412, 13syl 14 . . 3  |-  ( B  e.  RR  ->  (
( B ^ 2 )  =  0  <->  B  =  0 ) )
1511, 14bi2anan9 580 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A ^ 2 )  =  0  /\  ( B ^ 2 )  =  0 )  <->  ( A  =  0  /\  B  =  0 ) ) )
168, 15bitr2d 188 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =  0  /\  B  =  0 )  <->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1316    e. wcel 1465   class class class wbr 3899  (class class class)co 5742   CCcc 7586   RRcr 7587   0cc0 7588    + caddc 7591    <_ cle 7769   2c2 8735   ^cexp 10247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400  df-inn 8685  df-2 8743  df-n0 8936  df-z 9013  df-uz 9283  df-seqfrec 10174  df-exp 10248
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator