| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zltlem1 | Unicode version | ||
| Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| Ref | Expression |
|---|---|
| zltlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm 9381 |
. . 3
| |
| 2 | zleltp1 9398 |
. . 3
| |
| 3 | 1, 2 | sylan2 286 |
. 2
|
| 4 | zcn 9348 |
. . . . 5
| |
| 5 | ax-1cn 7989 |
. . . . 5
| |
| 6 | npcan 8252 |
. . . . 5
| |
| 7 | 4, 5, 6 | sylancl 413 |
. . . 4
|
| 8 | 7 | adantl 277 |
. . 3
|
| 9 | 8 | breq2d 4046 |
. 2
|
| 10 | 3, 9 | bitr2d 189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 |
| This theorem is referenced by: nn0ltlem1 9407 nn0lt2 9424 nn0le2is012 9425 nnltlem1 9428 nnm1ge0 9429 zextlt 9435 uzm1 9649 elfzm11 10183 elfzo 10241 fzosplitprm1 10327 intfracq 10429 iseqf1olemqcl 10608 iseqf1olemnab 10610 iseqf1olemab 10611 seq3f1olemqsumkj 10620 seq3f1olemqsum 10622 seqf1oglem1 10628 seq3coll 10951 fzm1ndvds 12038 bitscmp 12140 nn0seqcvgd 12234 isprm3 12311 isprm5lem 12334 isprm5 12335 pw2dvds 12359 prmdiveq 12429 4sqlem12 12596 wilthlem1 15300 lgseisenlem2 15396 lgsquadlem1 15402 2lgslem1a1 15411 2sqlem8 15448 |
| Copyright terms: Public domain | W3C validator |