ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltlem1 Unicode version

Theorem zltlem1 8703
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zltlem1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  M  <_  ( N  - 
1 ) ) )

Proof of Theorem zltlem1
StepHypRef Expression
1 peano2zm 8684 . . 3  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
2 zleltp1 8701 . . 3  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( M  <_ 
( N  -  1 )  <->  M  <  ( ( N  -  1 )  +  1 ) ) )
31, 2sylan2 280 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  ( N  -  1 )  <-> 
M  <  ( ( N  -  1 )  +  1 ) ) )
4 zcn 8651 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  CC )
5 ax-1cn 7341 . . . . 5  |-  1  e.  CC
6 npcan 7594 . . . . 5  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
74, 5, 6sylancl 404 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  +  1 )  =  N )
87adantl 271 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  - 
1 )  +  1 )  =  N )
98breq2d 3823 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  (
( N  -  1 )  +  1 )  <-> 
M  <  N )
)
103, 9bitr2d 187 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  M  <_  ( N  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   class class class wbr 3811  (class class class)co 5591   CCcc 7251   1c1 7254    + caddc 7256    < clt 7425    <_ cle 7426    - cmin 7556   ZZcz 8646
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-addcom 7348  ax-addass 7350  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-0id 7356  ax-rnegex 7357  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-ltadd 7364
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-iota 4934  df-fun 4971  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-inn 8317  df-n0 8566  df-z 8647
This theorem is referenced by:  nn0ltlem1  8710  nn0lt2  8724  nnltlem1  8727  nnm1ge0  8728  zextlt  8734  uzm1  8944  elfzm11  9398  elfzo  9450  fzosplitprm1  9534  intfracq  9616  fzm1ndvds  10637  nn0seqcvgd  10803  isprm3  10880  pw2dvds  10924
  Copyright terms: Public domain W3C validator