ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltlem1 Unicode version

Theorem zltlem1 8740
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zltlem1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  M  <_  ( N  - 
1 ) ) )

Proof of Theorem zltlem1
StepHypRef Expression
1 peano2zm 8721 . . 3  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
2 zleltp1 8738 . . 3  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( M  <_ 
( N  -  1 )  <->  M  <  ( ( N  -  1 )  +  1 ) ) )
31, 2sylan2 280 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  ( N  -  1 )  <-> 
M  <  ( ( N  -  1 )  +  1 ) ) )
4 zcn 8688 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  CC )
5 ax-1cn 7382 . . . . 5  |-  1  e.  CC
6 npcan 7635 . . . . 5  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
74, 5, 6sylancl 404 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  +  1 )  =  N )
87adantl 271 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  - 
1 )  +  1 )  =  N )
98breq2d 3832 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  (
( N  -  1 )  +  1 )  <-> 
M  <  N )
)
103, 9bitr2d 187 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  M  <_  ( N  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1287    e. wcel 1436   class class class wbr 3820  (class class class)co 5613   CCcc 7292   1c1 7295    + caddc 7297    < clt 7466    <_ cle 7467    - cmin 7597   ZZcz 8683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-addcom 7389  ax-addass 7391  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-0id 7397  ax-rnegex 7398  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-ltadd 7405
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-br 3821  df-opab 3875  df-id 4094  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-iota 4946  df-fun 4983  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-inn 8358  df-n0 8607  df-z 8684
This theorem is referenced by:  nn0ltlem1  8747  nn0lt2  8761  nnltlem1  8764  nnm1ge0  8765  zextlt  8771  uzm1  8981  elfzm11  9435  elfzo  9488  fzosplitprm1  9573  intfracq  9655  iseqf1olemqcl  9819  iseqf1olemnab  9821  iseqf1olemab  9822  iseqf1olemqsumkj  9831  iseqf1olemqsum  9833  iseqcoll  10143  fzm1ndvds  10732  nn0seqcvgd  10898  isprm3  10975  pw2dvds  11019
  Copyright terms: Public domain W3C validator