| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zltlem1 | Unicode version | ||
| Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| Ref | Expression |
|---|---|
| zltlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm 9412 |
. . 3
| |
| 2 | zleltp1 9430 |
. . 3
| |
| 3 | 1, 2 | sylan2 286 |
. 2
|
| 4 | zcn 9379 |
. . . . 5
| |
| 5 | ax-1cn 8020 |
. . . . 5
| |
| 6 | npcan 8283 |
. . . . 5
| |
| 7 | 4, 5, 6 | sylancl 413 |
. . . 4
|
| 8 | 7 | adantl 277 |
. . 3
|
| 9 | 8 | breq2d 4057 |
. 2
|
| 10 | 3, 9 | bitr2d 189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 |
| This theorem is referenced by: nn0ltlem1 9439 nn0lt2 9456 nn0le2is012 9457 nnltlem1 9460 nnm1ge0 9461 zextlt 9467 uzm1 9681 elfzm11 10215 elfzo 10273 fzosplitprm1 10365 intfracq 10467 iseqf1olemqcl 10646 iseqf1olemnab 10648 iseqf1olemab 10649 seq3f1olemqsumkj 10658 seq3f1olemqsum 10660 seqf1oglem1 10666 seq3coll 10989 fzm1ndvds 12200 bitscmp 12302 nn0seqcvgd 12396 isprm3 12473 isprm5lem 12496 isprm5 12497 pw2dvds 12521 prmdiveq 12591 4sqlem12 12758 wilthlem1 15485 lgseisenlem2 15581 lgsquadlem1 15587 2lgslem1a1 15596 2sqlem8 15633 |
| Copyright terms: Public domain | W3C validator |