ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  posdif Unicode version

Theorem posdif 8527
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
posdif  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )

Proof of Theorem posdif
StepHypRef Expression
1 resubcl 8335 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
21ancoms 268 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  -  A
)  e.  RR )
3 simpl 109 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
4 ltaddpos 8524 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  A  e.  RR )  ->  ( 0  <  ( B  -  A )  <->  A  <  ( A  +  ( B  -  A
) ) ) )
52, 3, 4syl2anc 411 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( B  -  A )  <->  A  <  ( A  +  ( B  -  A
) ) ) )
6 recn 8057 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
7 recn 8057 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
8 pncan3 8279 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
96, 7, 8syl2an 289 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( B  -  A ) )  =  B )
109breq2d 4055 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  ( A  +  ( B  -  A ) )  <->  A  <  B ) )
115, 10bitr2d 189 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   class class class wbr 4043  (class class class)co 5943   CCcc 7922   RRcr 7923   0cc0 7924    + caddc 7927    < clt 8106    - cmin 8242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-sub 8244  df-neg 8245
This theorem is referenced by:  posdifi  8570  posdifd  8604  nnsub  9074  znnsub  9423  difrp  9813  xposdif  10003  eluzgtdifelfzo  10324  subfzo0  10369  efltim  11980  cos01gt0  12045  ndvdsadd  12213  nn0seqcvgd  12334  sinq12gt0  15273  cosq14gt0  15275  logdivlti  15324  perfectlem2  15443
  Copyright terms: Public domain W3C validator