ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  posdif Unicode version

Theorem posdif 8474
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
posdif  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )

Proof of Theorem posdif
StepHypRef Expression
1 resubcl 8283 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
21ancoms 268 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  -  A
)  e.  RR )
3 simpl 109 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
4 ltaddpos 8471 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  A  e.  RR )  ->  ( 0  <  ( B  -  A )  <->  A  <  ( A  +  ( B  -  A
) ) ) )
52, 3, 4syl2anc 411 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( B  -  A )  <->  A  <  ( A  +  ( B  -  A
) ) ) )
6 recn 8005 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
7 recn 8005 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
8 pncan3 8227 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
96, 7, 8syl2an 289 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( B  -  A ) )  =  B )
109breq2d 4041 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  ( A  +  ( B  -  A ) )  <->  A  <  B ) )
115, 10bitr2d 189 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872    + caddc 7875    < clt 8054    - cmin 8190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193
This theorem is referenced by:  posdifi  8517  posdifd  8551  nnsub  9021  znnsub  9368  difrp  9758  xposdif  9948  eluzgtdifelfzo  10264  subfzo0  10309  efltim  11841  cos01gt0  11906  ndvdsadd  12072  nn0seqcvgd  12179  sinq12gt0  14965  cosq14gt0  14967  logdivlti  15016
  Copyright terms: Public domain W3C validator