ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  posdif Unicode version

Theorem posdif 8237
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
posdif  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )

Proof of Theorem posdif
StepHypRef Expression
1 resubcl 8046 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
21ancoms 266 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  -  A
)  e.  RR )
3 simpl 108 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
4 ltaddpos 8234 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  A  e.  RR )  ->  ( 0  <  ( B  -  A )  <->  A  <  ( A  +  ( B  -  A
) ) ) )
52, 3, 4syl2anc 409 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( B  -  A )  <->  A  <  ( A  +  ( B  -  A
) ) ) )
6 recn 7773 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
7 recn 7773 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
8 pncan3 7990 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
96, 7, 8syl2an 287 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( B  -  A ) )  =  B )
109breq2d 3945 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  ( A  +  ( B  -  A ) )  <->  A  <  B ) )
115, 10bitr2d 188 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   class class class wbr 3933  (class class class)co 5778   CCcc 7638   RRcr 7639   0cc0 7640    + caddc 7643    < clt 7820    - cmin 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-addcom 7740  ax-addass 7742  ax-distr 7744  ax-i2m1 7745  ax-0id 7748  ax-rnegex 7749  ax-cnre 7751  ax-pre-ltadd 7756
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2689  df-sbc 2911  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-br 3934  df-opab 3994  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-iota 5092  df-fun 5129  df-fv 5135  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-pnf 7822  df-mnf 7823  df-ltxr 7825  df-sub 7955  df-neg 7956
This theorem is referenced by:  posdifi  8280  posdifd  8314  nnsub  8779  znnsub  9125  difrp  9505  xposdif  9691  eluzgtdifelfzo  10001  subfzo0  10046  efltim  11432  cos01gt0  11496  ndvdsadd  11655  nn0seqcvgd  11749  sinq12gt0  12950  cosq14gt0  12952  logdivlti  13001
  Copyright terms: Public domain W3C validator