ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  posdif Unicode version

Theorem posdif 8528
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
posdif  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )

Proof of Theorem posdif
StepHypRef Expression
1 resubcl 8336 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
21ancoms 268 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  -  A
)  e.  RR )
3 simpl 109 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
4 ltaddpos 8525 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  A  e.  RR )  ->  ( 0  <  ( B  -  A )  <->  A  <  ( A  +  ( B  -  A
) ) ) )
52, 3, 4syl2anc 411 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( B  -  A )  <->  A  <  ( A  +  ( B  -  A
) ) ) )
6 recn 8058 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
7 recn 8058 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
8 pncan3 8280 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
96, 7, 8syl2an 289 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( B  -  A ) )  =  B )
109breq2d 4056 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  ( A  +  ( B  -  A ) )  <->  A  <  B ) )
115, 10bitr2d 189 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925    + caddc 7928    < clt 8107    - cmin 8243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-sub 8245  df-neg 8246
This theorem is referenced by:  posdifi  8571  posdifd  8605  nnsub  9075  znnsub  9424  difrp  9814  xposdif  10004  eluzgtdifelfzo  10326  subfzo0  10371  efltim  12009  cos01gt0  12074  ndvdsadd  12242  nn0seqcvgd  12363  sinq12gt0  15302  cosq14gt0  15304  logdivlti  15353  perfectlem2  15472
  Copyright terms: Public domain W3C validator