ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geoisum1c Unicode version

Theorem geoisum1c 11687
Description: The infinite sum of  A  x.  ( R ^ 1 )  +  A  x.  ( R ^ 2 )... is  ( A  x.  R )  /  (
1  -  R ). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisum1c  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  sum_ k  e.  NN  ( A  x.  ( R ^ k ) )  =  ( ( A  x.  R )  /  ( 1  -  R ) ) )
Distinct variable groups:    A, k    R, k

Proof of Theorem geoisum1c
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . 3  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  A  e.  CC )
2 simp2 1000 . . 3  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  R  e.  CC )
3 1cnd 8044 . . . 4  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  1  e.  CC )
43, 2subcld 8339 . . 3  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  (
1  -  R )  e.  CC )
5 1red 8043 . . . . . 6  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  1  e.  RR )
6 simp3 1001 . . . . . 6  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  ( abs `  R )  <  1 )
72, 5, 6absltap 11676 . . . . 5  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  R #  1 )
8 apsym 8635 . . . . . 6  |-  ( ( R  e.  CC  /\  1  e.  CC )  ->  ( R #  1  <->  1 #  R ) )
92, 3, 8syl2anc 411 . . . . 5  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  ( R #  1  <->  1 #  R )
)
107, 9mpbid 147 . . . 4  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  1 #  R )
113, 2, 10subap0d 8673 . . 3  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  (
1  -  R ) #  0 )
121, 2, 4, 11divassapd 8855 . 2  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  (
( A  x.  R
)  /  ( 1  -  R ) )  =  ( A  x.  ( R  /  (
1  -  R ) ) ) )
13 geoisum1 11686 . . . 4  |-  ( ( R  e.  CC  /\  ( abs `  R )  <  1 )  ->  sum_ k  e.  NN  ( R ^ k )  =  ( R  /  (
1  -  R ) ) )
14133adant1 1017 . . 3  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  sum_ k  e.  NN  ( R ^
k )  =  ( R  /  ( 1  -  R ) ) )
1514oveq2d 5939 . 2  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  ( A  x.  sum_ k  e.  NN  ( R ^
k ) )  =  ( A  x.  ( R  /  ( 1  -  R ) ) ) )
16 nnuz 9639 . . 3  |-  NN  =  ( ZZ>= `  1 )
17 1zzd 9355 . . 3  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  1  e.  ZZ )
18 simpr 110 . . . 4  |-  ( ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  /\  k  e.  NN )  ->  k  e.  NN )
19 simpl2 1003 . . . . 5  |-  ( ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  /\  k  e.  NN )  ->  R  e.  CC )
2018nnnn0d 9304 . . . . 5  |-  ( ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  /\  k  e.  NN )  ->  k  e.  NN0 )
2119, 20expcld 10767 . . . 4  |-  ( ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  /\  k  e.  NN )  ->  ( R ^ k
)  e.  CC )
22 oveq2 5931 . . . . 5  |-  ( n  =  k  ->  ( R ^ n )  =  ( R ^ k
) )
23 eqid 2196 . . . . 5  |-  ( n  e.  NN  |->  ( R ^ n ) )  =  ( n  e.  NN  |->  ( R ^
n ) )
2422, 23fvmptg 5638 . . . 4  |-  ( ( k  e.  NN  /\  ( R ^ k )  e.  CC )  -> 
( ( n  e.  NN  |->  ( R ^
n ) ) `  k )  =  ( R ^ k ) )
2518, 21, 24syl2anc 411 . . 3  |-  ( ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( R ^
n ) ) `  k )  =  ( R ^ k ) )
26 nnnn0 9258 . . . . 5  |-  ( k  e.  NN  ->  k  e.  NN0 )
2726adantl 277 . . . 4  |-  ( ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  /\  k  e.  NN )  ->  k  e.  NN0 )
2819, 27expcld 10767 . . 3  |-  ( ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  /\  k  e.  NN )  ->  ( R ^ k
)  e.  CC )
29 seqex 10543 . . . 4  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( R ^ n ) ) )  e.  _V
30 1nn0 9267 . . . . . . 7  |-  1  e.  NN0
3130a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  1  e.  NN0 )
32 elnnuz 9640 . . . . . . 7  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
3332, 25sylan2br 288 . . . . . 6  |-  ( ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  ( R ^
n ) ) `  k )  =  ( R ^ k ) )
342, 6, 31, 33geolim2 11679 . . . . 5  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( R ^ n ) ) )  ~~>  ( ( R ^ 1 )  /  ( 1  -  R ) ) )
35 climcl 11449 . . . . 5  |-  (  seq 1 (  +  , 
( n  e.  NN  |->  ( R ^ n ) ) )  ~~>  ( ( R ^ 1 )  /  ( 1  -  R ) )  -> 
( ( R ^
1 )  /  (
1  -  R ) )  e.  CC )
3634, 35syl 14 . . . 4  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  (
( R ^ 1 )  /  ( 1  -  R ) )  e.  CC )
37 breldmg 4873 . . . 4  |-  ( (  seq 1 (  +  ,  ( n  e.  NN  |->  ( R ^
n ) ) )  e.  _V  /\  (
( R ^ 1 )  /  ( 1  -  R ) )  e.  CC  /\  seq 1 (  +  , 
( n  e.  NN  |->  ( R ^ n ) ) )  ~~>  ( ( R ^ 1 )  /  ( 1  -  R ) ) )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( R ^
n ) ) )  e.  dom  ~~>  )
3829, 36, 34, 37mp3an2i 1353 . . 3  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( R ^ n ) ) )  e.  dom  ~~>  )
3916, 17, 25, 28, 38, 1isummulc2 11593 . 2  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  ( A  x.  sum_ k  e.  NN  ( R ^
k ) )  = 
sum_ k  e.  NN  ( A  x.  ( R ^ k ) ) )
4012, 15, 393eqtr2rd 2236 1  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  sum_ k  e.  NN  ( A  x.  ( R ^ k ) )  =  ( ( A  x.  R )  /  ( 1  -  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763   class class class wbr 4034    |-> cmpt 4095   dom cdm 4664   ` cfv 5259  (class class class)co 5923   CCcc 7879   1c1 7882    + caddc 7884    x. cmul 7886    < clt 8063    - cmin 8199   # cap 8610    / cdiv 8701   NNcn 8992   NN0cn0 9251   ZZ>=cuz 9603    seqcseq 10541   ^cexp 10632   abscabs 11164    ~~> cli 11445   sum_csu 11520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-frec 6450  df-1o 6475  df-oadd 6479  df-er 6593  df-en 6801  df-dom 6802  df-fin 6803  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-fz 10086  df-fzo 10220  df-seqfrec 10542  df-exp 10633  df-ihash 10870  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-clim 11446  df-sumdc 11521
This theorem is referenced by:  0.999...  11688
  Copyright terms: Public domain W3C validator