ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breldmg GIF version

Theorem breldmg 4745
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
breldmg ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)

Proof of Theorem breldmg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 3933 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
21spcegv 2774 . . . 4 (𝐵𝐷 → (𝐴𝑅𝐵 → ∃𝑥 𝐴𝑅𝑥))
32imp 123 . . 3 ((𝐵𝐷𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥)
433adant1 999 . 2 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥)
5 eldmg 4734 . . 3 (𝐴𝐶 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
653ad2ant1 1002 . 2 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
74, 6mpbird 166 1 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 962  wex 1468  wcel 1480   class class class wbr 3929  dom cdm 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-dm 4549
This theorem is referenced by:  brelrng  4770  releldm  4774  brtposg  6151  shftfvalg  10602  shftfval  10605  geolim2  11293  geoisum1c  11301  ntrivcvgap  11329  eftlub  11408  eflegeo  11419  dvcj  12856  dvrecap  12860  dvef  12871  trilpolemisumle  13292  trilpolemeq1  13294
  Copyright terms: Public domain W3C validator