ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breldmg GIF version

Theorem breldmg 4851
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
breldmg ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)

Proof of Theorem breldmg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 4022 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
21spcegv 2840 . . . 4 (𝐵𝐷 → (𝐴𝑅𝐵 → ∃𝑥 𝐴𝑅𝑥))
32imp 124 . . 3 ((𝐵𝐷𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥)
433adant1 1017 . 2 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥)
5 eldmg 4840 . . 3 (𝐴𝐶 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
653ad2ant1 1020 . 2 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
74, 6mpbird 167 1 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980  wex 1503  wcel 2160   class class class wbr 4018  dom cdm 4644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-dm 4654
This theorem is referenced by:  brelrng  4876  releldm  4880  brtposg  6279  shftfvalg  10859  shftfval  10862  geolim2  11552  geoisum1c  11560  ntrivcvgap  11588  eftlub  11730  eflegeo  11741  dvcj  14630  dvrecap  14634  dvef  14645  trilpolemisumle  15245  trilpolemeq1  15247
  Copyright terms: Public domain W3C validator