| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breldmg | GIF version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| breldmg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4049 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 2 | 1 | spcegv 2861 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 → ∃𝑥 𝐴𝑅𝑥)) |
| 3 | 2 | imp 124 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥) |
| 4 | 3 | 3adant1 1018 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥) |
| 5 | eldmg 4874 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 6 | 5 | 3ad2ant1 1021 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| 7 | 4, 6 | mpbird 167 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 ∃wex 1515 ∈ wcel 2176 class class class wbr 4045 dom cdm 4676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-dm 4686 |
| This theorem is referenced by: brelrng 4910 releldm 4914 brtposg 6342 shftfvalg 11162 shftfval 11165 geolim2 11856 geoisum1c 11864 ntrivcvgap 11892 eftlub 12034 eflegeo 12045 dvcj 15214 dvrecap 15218 dvef 15232 trilpolemisumle 16014 trilpolemeq1 16016 |
| Copyright terms: Public domain | W3C validator |