ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eflegeo Unicode version

Theorem eflegeo 11844
Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.)
Hypotheses
Ref Expression
eflegeo.1  |-  ( ph  ->  A  e.  RR )
eflegeo.2  |-  ( ph  ->  0  <_  A )
eflegeo.3  |-  ( ph  ->  A  <  1 )
Assertion
Ref Expression
eflegeo  |-  ( ph  ->  ( exp `  A
)  <_  ( 1  /  ( 1  -  A ) ) )

Proof of Theorem eflegeo
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 9627 . . 3  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9329 . . 3  |-  ( ph  ->  0  e.  ZZ )
3 eflegeo.1 . . . . 5  |-  ( ph  ->  A  e.  RR )
43recnd 8048 . . . 4  |-  ( ph  ->  A  e.  CC )
5 eqid 2193 . . . . 5  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
65eftvalcn 11800 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
74, 6sylan 283 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
8 reeftcl 11798 . . . 4  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  RR )
93, 8sylan 283 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  RR )
10 simpr 110 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
113adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  e.  RR )
1211, 10reexpcld 10761 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  RR )
13 oveq2 5926 . . . . 5  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
14 eqid 2193 . . . . 5  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
1513, 14fvmptg 5633 . . . 4  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  RR )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
1610, 12, 15syl2anc 411 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
17 reexpcl 10627 . . . 4  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  RR )
183, 17sylan 283 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  RR )
19 faccl 10806 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
2019adantl 277 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
2120nnred 8995 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  RR )
22 eflegeo.2 . . . . . . 7  |-  ( ph  ->  0  <_  A )
2322adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  A )
2411, 10, 23expge0d 10762 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  ( A ^ k ) )
2520nnge1d 9025 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  1  <_  ( ! `  k ) )
2618, 21, 24, 25lemulge12d 8957 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  <_ 
( ( ! `  k )  x.  ( A ^ k ) ) )
2720nngt0d 9026 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <  ( ! `  k ) )
28 ledivmul 8896 . . . . 5  |-  ( ( ( A ^ k
)  e.  RR  /\  ( A ^ k )  e.  RR  /\  (
( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) ) )  ->  ( ( ( A ^ k )  /  ( ! `  k ) )  <_ 
( A ^ k
)  <->  ( A ^
k )  <_  (
( ! `  k
)  x.  ( A ^ k ) ) ) )
2918, 18, 21, 27, 28syl112anc 1253 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A ^ k
)  /  ( ! `
 k ) )  <_  ( A ^
k )  <->  ( A ^ k )  <_ 
( ( ! `  k )  x.  ( A ^ k ) ) ) )
3026, 29mpbird 167 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  <_  ( A ^ k ) )
315efcllem 11802 . . . 4  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) )  e. 
dom 
~~>  )
324, 31syl 14 . . 3  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
33 seqex 10520 . . . 4  |-  seq 0
(  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  _V
34 eflegeo.3 . . . . . 6  |-  ( ph  ->  A  <  1 )
35 1red 8034 . . . . . . 7  |-  ( ph  ->  1  e.  RR )
36 difrp 9758 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  <  1  <->  ( 1  -  A )  e.  RR+ ) )
373, 35, 36syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A  <  1  <->  ( 1  -  A )  e.  RR+ ) )
3834, 37mpbid 147 . . . . 5  |-  ( ph  ->  ( 1  -  A
)  e.  RR+ )
3938rpreccld 9773 . . . 4  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  e.  RR+ )
403, 22absidd 11311 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  =  A )
4140, 34eqbrtrd 4051 . . . . 5  |-  ( ph  ->  ( abs `  A
)  <  1 )
424, 41, 16geolim 11654 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  ~~>  ( 1  /  (
1  -  A ) ) )
43 breldmg 4868 . . . 4  |-  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  _V  /\  (
1  /  ( 1  -  A ) )  e.  RR+  /\  seq 0
(  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  ~~>  ( 1  / 
( 1  -  A
) ) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( A ^ n ) ) )  e.  dom  ~~>  )
4433, 39, 42, 43mp3an2i 1353 . . 3  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
451, 2, 7, 9, 16, 18, 30, 32, 44isumle 11638 . 2  |-  ( ph  -> 
sum_ k  e.  NN0  ( ( A ^
k )  /  ( ! `  k )
)  <_  sum_ k  e. 
NN0  ( A ^
k ) )
46 efval 11804 . . 3  |-  ( A  e.  CC  ->  ( exp `  A )  = 
sum_ k  e.  NN0  ( ( A ^
k )  /  ( ! `  k )
) )
474, 46syl 14 . 2  |-  ( ph  ->  ( exp `  A
)  =  sum_ k  e.  NN0  ( ( A ^ k )  / 
( ! `  k
) ) )
48 expcl 10628 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
494, 48sylan 283 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  CC )
501, 2, 16, 49, 42isumclim 11564 . . 3  |-  ( ph  -> 
sum_ k  e.  NN0  ( A ^ k )  =  ( 1  / 
( 1  -  A
) ) )
5150eqcomd 2199 . 2  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  =  sum_ k  e.  NN0  ( A ^
k ) )
5245, 47, 513brtr4d 4061 1  |-  ( ph  ->  ( exp `  A
)  <_  ( 1  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   class class class wbr 4029    |-> cmpt 4090   dom cdm 4659   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190    / cdiv 8691   NNcn 8982   NN0cn0 9240   RR+crp 9719    seqcseq 10518   ^cexp 10609   !cfa 10796   abscabs 11141    ~~> cli 11421   sum_csu 11496   expce 11785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator