ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geolim2 Unicode version

Theorem geolim2 11694
Description: The partial sums in the geometric series  A ^ M  +  A ^ ( M  +  1 )... converge to  ( ( A ^ M )  / 
( 1  -  A
) ). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
geolim.1  |-  ( ph  ->  A  e.  CC )
geolim.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
geolim2.3  |-  ( ph  ->  M  e.  NN0 )
geolim2.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( A ^ k ) )
Assertion
Ref Expression
geolim2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, F    k, M    ph, k

Proof of Theorem geolim2
Dummy variables  j  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 geolim2.3 . . . 4  |-  ( ph  ->  M  e.  NN0 )
32nn0zd 9463 . . 3  |-  ( ph  ->  M  e.  ZZ )
4 geolim2.4 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( A ^ k ) )
5 geolim.1 . . . . 5  |-  ( ph  ->  A  e.  CC )
65adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
7 eluznn0 9690 . . . . 5  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
82, 7sylan 283 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  NN0 )
96, 8expcld 10782 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ k )  e.  CC )
10 eluzelz 9627 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
1110adantl 277 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ZZ )
12 0red 8044 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  e.  RR )
133adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
1413zred 9465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  RR )
1511zred 9465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  RR )
162nn0ge0d 9322 . . . . . . . . . 10  |-  ( ph  ->  0  <_  M )
1716adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  <_  M )
18 eluzle 9630 . . . . . . . . . 10  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
1918adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  <_  x )
2012, 14, 15, 17, 19letrd 8167 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  <_  x )
21 elnn0z 9356 . . . . . . . 8  |-  ( x  e.  NN0  <->  ( x  e.  ZZ  /\  0  <_  x ) )
2211, 20, 21sylanbrc 417 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  NN0 )
235adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
2423, 22expcld 10782 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( A ^ x )  e.  CC )
25 oveq2 5933 . . . . . . . 8  |-  ( n  =  x  ->  ( A ^ n )  =  ( A ^ x
) )
26 eqid 2196 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
2725, 26fvmptg 5640 . . . . . . 7  |-  ( ( x  e.  NN0  /\  ( A ^ x )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  x )  =  ( A ^ x ) )
2822, 24, 27syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 x )  =  ( A ^ x
) )
2928, 24eqeltrd 2273 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 x )  e.  CC )
30 oveq2 5933 . . . . . . . 8  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
3130, 26fvmptg 5640 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
328, 9, 31syl2anc 411 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
3332, 4eqtr4d 2232 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( F `  k
) )
34 addcl 8021 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3534adantl 277 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
363, 29, 33, 35seq3feq 10589 . . . 4  |-  ( ph  ->  seq M (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  =  seq M (  +  ,  F ) )
37 seqex 10558 . . . . . 6  |-  seq 0
(  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  _V
38 ax-1cn 7989 . . . . . . . 8  |-  1  e.  CC
39 subcl 8242 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
4038, 5, 39sylancr 414 . . . . . . 7  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
41 1cnd 8059 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
42 1red 8058 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
43 geolim.2 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  A
)  <  1 )
445, 42, 43absltap 11691 . . . . . . . . 9  |-  ( ph  ->  A #  1 )
45 apsym 8650 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A #  1  <->  1 #  A ) )
465, 41, 45syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( A #  1  <->  1 #  A ) )
4744, 46mpbid 147 . . . . . . . 8  |-  ( ph  ->  1 #  A )
4841, 5, 47subap0d 8688 . . . . . . 7  |-  ( ph  ->  ( 1  -  A
) #  0 )
4940, 48recclapd 8825 . . . . . 6  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  e.  CC )
50 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
515adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
5251, 50expcld 10782 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
53 oveq2 5933 . . . . . . . . 9  |-  ( n  =  j  ->  ( A ^ n )  =  ( A ^ j
) )
5453, 26fvmptg 5640 . . . . . . . 8  |-  ( ( j  e.  NN0  /\  ( A ^ j )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  j )  =  ( A ^ j ) )
5550, 52, 54syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  =  ( A ^ j
) )
565, 43, 55geolim 11693 . . . . . 6  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  ~~>  ( 1  /  (
1  -  A ) ) )
57 breldmg 4873 . . . . . 6  |-  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  _V  /\  (
1  /  ( 1  -  A ) )  e.  CC  /\  seq 0 (  +  , 
( n  e.  NN0  |->  ( A ^ n ) ) )  ~~>  ( 1  /  ( 1  -  A ) ) )  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
5837, 49, 56, 57mp3an2i 1353 . . . . 5  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
59 nn0uz 9653 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
60 expcl 10666 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ j
)  e.  CC )
615, 60sylan 283 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
6255, 61eqeltrd 2273 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  e.  CC )
6359, 2, 62iserex 11521 . . . . 5  |-  ( ph  ->  (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  dom  ~~>  ) )
6458, 63mpbid 147 . . . 4  |-  ( ph  ->  seq M (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
6536, 64eqeltrrd 2274 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
661, 3, 4, 9, 65isumclim2 11604 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) )
67 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
685adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  e.  CC )
6968, 67expcld 10782 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  CC )
7067, 69, 31syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
71 expcl 10666 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
725, 71sylan 283 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  CC )
7359, 1, 2, 70, 72, 58isumsplit 11673 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  NN0  ( A ^ k )  =  ( sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^
k )  +  sum_ k  e.  ( ZZ>= `  M ) ( A ^ k ) ) )
74 0zd 9355 . . . . . . 7  |-  ( ph  ->  0  e.  ZZ )
7559, 74, 70, 72, 56isumclim 11603 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  NN0  ( A ^ k )  =  ( 1  / 
( 1  -  A
) ) )
7673, 75eqtr3d 2231 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^ k
)  +  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) )  =  ( 1  /  ( 1  -  A ) ) )
775, 44, 2geoserap 11689 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )
7877oveq1d 5940 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^ k
)  +  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) )  =  ( ( ( 1  -  ( A ^ M
) )  /  (
1  -  A ) )  +  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) ) )
7976, 78eqtr3d 2231 . . . 4  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  =  ( ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) )  + 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) ) )
8079oveq1d 5940 . . 3  |-  ( ph  ->  ( ( 1  / 
( 1  -  A
) )  -  (
( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )  =  ( ( ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) )  + 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) )  -  ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) ) )
815, 2expcld 10782 . . . . . 6  |-  ( ph  ->  ( A ^ M
)  e.  CC )
82 subcl 8242 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( A ^ M )  e.  CC )  -> 
( 1  -  ( A ^ M ) )  e.  CC )
8338, 81, 82sylancr 414 . . . . 5  |-  ( ph  ->  ( 1  -  ( A ^ M ) )  e.  CC )
8441, 83, 40, 48divsubdirapd 8874 . . . 4  |-  ( ph  ->  ( ( 1  -  ( 1  -  ( A ^ M ) ) )  /  ( 1  -  A ) )  =  ( ( 1  /  ( 1  -  A ) )  -  ( ( 1  -  ( A ^ M
) )  /  (
1  -  A ) ) ) )
85 nncan 8272 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( A ^ M )  e.  CC )  -> 
( 1  -  (
1  -  ( A ^ M ) ) )  =  ( A ^ M ) )
8638, 81, 85sylancr 414 . . . . 5  |-  ( ph  ->  ( 1  -  (
1  -  ( A ^ M ) ) )  =  ( A ^ M ) )
8786oveq1d 5940 . . . 4  |-  ( ph  ->  ( ( 1  -  ( 1  -  ( A ^ M ) ) )  /  ( 1  -  A ) )  =  ( ( A ^ M )  / 
( 1  -  A
) ) )
8884, 87eqtr3d 2231 . . 3  |-  ( ph  ->  ( ( 1  / 
( 1  -  A
) )  -  (
( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )  =  ( ( A ^ M )  / 
( 1  -  A
) ) )
8983, 40, 48divclapd 8834 . . . 4  |-  ( ph  ->  ( ( 1  -  ( A ^ M
) )  /  (
1  -  A ) )  e.  CC )
901, 3, 32, 9, 64isumcl 11607 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k )  e.  CC )
9189, 90pncan2d 8356 . . 3  |-  ( ph  ->  ( ( ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) )  + 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) )  -  ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )  =  sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) )
9280, 88, 913eqtr3rd 2238 . 2  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k )  =  ( ( A ^ M )  / 
( 1  -  A
) ) )
9366, 92breqtrd 4060 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763   class class class wbr 4034    |-> cmpt 4095   dom cdm 4664   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    < clt 8078    <_ cle 8079    - cmin 8214   # cap 8625    / cdiv 8716   NN0cn0 9266   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100    seqcseq 10556   ^cexp 10647   abscabs 11179    ~~> cli 11460   sum_csu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  geoisum1  11701  geoisum1c  11702  trilpolemisumle  15769
  Copyright terms: Public domain W3C validator