ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geolim2 Unicode version

Theorem geolim2 11504
Description: The partial sums in the geometric series  A ^ M  +  A ^ ( M  +  1 )... converge to  ( ( A ^ M )  / 
( 1  -  A
) ). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
geolim.1  |-  ( ph  ->  A  e.  CC )
geolim.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
geolim2.3  |-  ( ph  ->  M  e.  NN0 )
geolim2.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( A ^ k ) )
Assertion
Ref Expression
geolim2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, F    k, M    ph, k

Proof of Theorem geolim2
Dummy variables  j  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 geolim2.3 . . . 4  |-  ( ph  ->  M  e.  NN0 )
32nn0zd 9362 . . 3  |-  ( ph  ->  M  e.  ZZ )
4 geolim2.4 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( A ^ k ) )
5 geolim.1 . . . . 5  |-  ( ph  ->  A  e.  CC )
65adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
7 eluznn0 9588 . . . . 5  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
82, 7sylan 283 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  NN0 )
96, 8expcld 10639 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ k )  e.  CC )
10 eluzelz 9526 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
1110adantl 277 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ZZ )
12 0red 7949 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  e.  RR )
133adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
1413zred 9364 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  RR )
1511zred 9364 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  RR )
162nn0ge0d 9221 . . . . . . . . . 10  |-  ( ph  ->  0  <_  M )
1716adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  <_  M )
18 eluzle 9529 . . . . . . . . . 10  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
1918adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  <_  x )
2012, 14, 15, 17, 19letrd 8071 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  <_  x )
21 elnn0z 9255 . . . . . . . 8  |-  ( x  e.  NN0  <->  ( x  e.  ZZ  /\  0  <_  x ) )
2211, 20, 21sylanbrc 417 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  NN0 )
235adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
2423, 22expcld 10639 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( A ^ x )  e.  CC )
25 oveq2 5877 . . . . . . . 8  |-  ( n  =  x  ->  ( A ^ n )  =  ( A ^ x
) )
26 eqid 2177 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
2725, 26fvmptg 5588 . . . . . . 7  |-  ( ( x  e.  NN0  /\  ( A ^ x )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  x )  =  ( A ^ x ) )
2822, 24, 27syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 x )  =  ( A ^ x
) )
2928, 24eqeltrd 2254 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 x )  e.  CC )
30 oveq2 5877 . . . . . . . 8  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
3130, 26fvmptg 5588 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
328, 9, 31syl2anc 411 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
3332, 4eqtr4d 2213 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( F `  k
) )
34 addcl 7927 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3534adantl 277 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
363, 29, 33, 35seq3feq 10458 . . . 4  |-  ( ph  ->  seq M (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  =  seq M (  +  ,  F ) )
37 seqex 10433 . . . . . 6  |-  seq 0
(  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  _V
38 ax-1cn 7895 . . . . . . . 8  |-  1  e.  CC
39 subcl 8146 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
4038, 5, 39sylancr 414 . . . . . . 7  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
41 1cnd 7964 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
42 1red 7963 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
43 geolim.2 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  A
)  <  1 )
445, 42, 43absltap 11501 . . . . . . . . 9  |-  ( ph  ->  A #  1 )
45 apsym 8553 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A #  1  <->  1 #  A ) )
465, 41, 45syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( A #  1  <->  1 #  A ) )
4744, 46mpbid 147 . . . . . . . 8  |-  ( ph  ->  1 #  A )
4841, 5, 47subap0d 8591 . . . . . . 7  |-  ( ph  ->  ( 1  -  A
) #  0 )
4940, 48recclapd 8727 . . . . . 6  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  e.  CC )
50 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
515adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
5251, 50expcld 10639 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
53 oveq2 5877 . . . . . . . . 9  |-  ( n  =  j  ->  ( A ^ n )  =  ( A ^ j
) )
5453, 26fvmptg 5588 . . . . . . . 8  |-  ( ( j  e.  NN0  /\  ( A ^ j )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  j )  =  ( A ^ j ) )
5550, 52, 54syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  =  ( A ^ j
) )
565, 43, 55geolim 11503 . . . . . 6  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  ~~>  ( 1  /  (
1  -  A ) ) )
57 breldmg 4829 . . . . . 6  |-  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  _V  /\  (
1  /  ( 1  -  A ) )  e.  CC  /\  seq 0 (  +  , 
( n  e.  NN0  |->  ( A ^ n ) ) )  ~~>  ( 1  /  ( 1  -  A ) ) )  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
5837, 49, 56, 57mp3an2i 1342 . . . . 5  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
59 nn0uz 9551 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
60 expcl 10524 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ j
)  e.  CC )
615, 60sylan 283 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
6255, 61eqeltrd 2254 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  e.  CC )
6359, 2, 62iserex 11331 . . . . 5  |-  ( ph  ->  (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  dom  ~~>  ) )
6458, 63mpbid 147 . . . 4  |-  ( ph  ->  seq M (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
6536, 64eqeltrrd 2255 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
661, 3, 4, 9, 65isumclim2 11414 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) )
67 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
685adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  e.  CC )
6968, 67expcld 10639 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  CC )
7067, 69, 31syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
71 expcl 10524 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
725, 71sylan 283 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  CC )
7359, 1, 2, 70, 72, 58isumsplit 11483 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  NN0  ( A ^ k )  =  ( sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^
k )  +  sum_ k  e.  ( ZZ>= `  M ) ( A ^ k ) ) )
74 0zd 9254 . . . . . . 7  |-  ( ph  ->  0  e.  ZZ )
7559, 74, 70, 72, 56isumclim 11413 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  NN0  ( A ^ k )  =  ( 1  / 
( 1  -  A
) ) )
7673, 75eqtr3d 2212 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^ k
)  +  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) )  =  ( 1  /  ( 1  -  A ) ) )
775, 44, 2geoserap 11499 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )
7877oveq1d 5884 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^ k
)  +  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) )  =  ( ( ( 1  -  ( A ^ M
) )  /  (
1  -  A ) )  +  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) ) )
7976, 78eqtr3d 2212 . . . 4  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  =  ( ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) )  + 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) ) )
8079oveq1d 5884 . . 3  |-  ( ph  ->  ( ( 1  / 
( 1  -  A
) )  -  (
( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )  =  ( ( ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) )  + 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) )  -  ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) ) )
815, 2expcld 10639 . . . . . 6  |-  ( ph  ->  ( A ^ M
)  e.  CC )
82 subcl 8146 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( A ^ M )  e.  CC )  -> 
( 1  -  ( A ^ M ) )  e.  CC )
8338, 81, 82sylancr 414 . . . . 5  |-  ( ph  ->  ( 1  -  ( A ^ M ) )  e.  CC )
8441, 83, 40, 48divsubdirapd 8776 . . . 4  |-  ( ph  ->  ( ( 1  -  ( 1  -  ( A ^ M ) ) )  /  ( 1  -  A ) )  =  ( ( 1  /  ( 1  -  A ) )  -  ( ( 1  -  ( A ^ M
) )  /  (
1  -  A ) ) ) )
85 nncan 8176 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( A ^ M )  e.  CC )  -> 
( 1  -  (
1  -  ( A ^ M ) ) )  =  ( A ^ M ) )
8638, 81, 85sylancr 414 . . . . 5  |-  ( ph  ->  ( 1  -  (
1  -  ( A ^ M ) ) )  =  ( A ^ M ) )
8786oveq1d 5884 . . . 4  |-  ( ph  ->  ( ( 1  -  ( 1  -  ( A ^ M ) ) )  /  ( 1  -  A ) )  =  ( ( A ^ M )  / 
( 1  -  A
) ) )
8884, 87eqtr3d 2212 . . 3  |-  ( ph  ->  ( ( 1  / 
( 1  -  A
) )  -  (
( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )  =  ( ( A ^ M )  / 
( 1  -  A
) ) )
8983, 40, 48divclapd 8736 . . . 4  |-  ( ph  ->  ( ( 1  -  ( A ^ M
) )  /  (
1  -  A ) )  e.  CC )
901, 3, 32, 9, 64isumcl 11417 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k )  e.  CC )
9189, 90pncan2d 8260 . . 3  |-  ( ph  ->  ( ( ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) )  + 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) )  -  ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )  =  sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) )
9280, 88, 913eqtr3rd 2219 . 2  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k )  =  ( ( A ^ M )  / 
( 1  -  A
) ) )
9366, 92breqtrd 4026 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2737   class class class wbr 4000    |-> cmpt 4061   dom cdm 4623   ` cfv 5212  (class class class)co 5869   CCcc 7800   0cc0 7802   1c1 7803    + caddc 7805    < clt 7982    <_ cle 7983    - cmin 8118   # cap 8528    / cdiv 8618   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995    seqcseq 10431   ^cexp 10505   abscabs 10990    ~~> cli 11270   sum_csu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  geoisum1  11511  geoisum1c  11512  trilpolemisumle  14442
  Copyright terms: Public domain W3C validator