ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geolim2 Unicode version

Theorem geolim2 11453
Description: The partial sums in the geometric series  A ^ M  +  A ^ ( M  +  1 )... converge to  ( ( A ^ M )  / 
( 1  -  A
) ). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
geolim.1  |-  ( ph  ->  A  e.  CC )
geolim.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
geolim2.3  |-  ( ph  ->  M  e.  NN0 )
geolim2.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( A ^ k ) )
Assertion
Ref Expression
geolim2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, F    k, M    ph, k

Proof of Theorem geolim2
Dummy variables  j  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 geolim2.3 . . . 4  |-  ( ph  ->  M  e.  NN0 )
32nn0zd 9311 . . 3  |-  ( ph  ->  M  e.  ZZ )
4 geolim2.4 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( A ^ k ) )
5 geolim.1 . . . . 5  |-  ( ph  ->  A  e.  CC )
65adantr 274 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
7 eluznn0 9537 . . . . 5  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
82, 7sylan 281 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  NN0 )
96, 8expcld 10588 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ k )  e.  CC )
10 eluzelz 9475 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
1110adantl 275 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ZZ )
12 0red 7900 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  e.  RR )
133adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
1413zred 9313 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  RR )
1511zred 9313 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  RR )
162nn0ge0d 9170 . . . . . . . . . 10  |-  ( ph  ->  0  <_  M )
1716adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  <_  M )
18 eluzle 9478 . . . . . . . . . 10  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
1918adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  <_  x )
2012, 14, 15, 17, 19letrd 8022 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  <_  x )
21 elnn0z 9204 . . . . . . . 8  |-  ( x  e.  NN0  <->  ( x  e.  ZZ  /\  0  <_  x ) )
2211, 20, 21sylanbrc 414 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  NN0 )
235adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
2423, 22expcld 10588 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( A ^ x )  e.  CC )
25 oveq2 5850 . . . . . . . 8  |-  ( n  =  x  ->  ( A ^ n )  =  ( A ^ x
) )
26 eqid 2165 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
2725, 26fvmptg 5562 . . . . . . 7  |-  ( ( x  e.  NN0  /\  ( A ^ x )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  x )  =  ( A ^ x ) )
2822, 24, 27syl2anc 409 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 x )  =  ( A ^ x
) )
2928, 24eqeltrd 2243 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 x )  e.  CC )
30 oveq2 5850 . . . . . . . 8  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
3130, 26fvmptg 5562 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
328, 9, 31syl2anc 409 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
3332, 4eqtr4d 2201 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( F `  k
) )
34 addcl 7878 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3534adantl 275 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
363, 29, 33, 35seq3feq 10407 . . . 4  |-  ( ph  ->  seq M (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  =  seq M (  +  ,  F ) )
37 seqex 10382 . . . . . 6  |-  seq 0
(  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  _V
38 ax-1cn 7846 . . . . . . . 8  |-  1  e.  CC
39 subcl 8097 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
4038, 5, 39sylancr 411 . . . . . . 7  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
41 1cnd 7915 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
42 1red 7914 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
43 geolim.2 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  A
)  <  1 )
445, 42, 43absltap 11450 . . . . . . . . 9  |-  ( ph  ->  A #  1 )
45 apsym 8504 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A #  1  <->  1 #  A ) )
465, 41, 45syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( A #  1  <->  1 #  A ) )
4744, 46mpbid 146 . . . . . . . 8  |-  ( ph  ->  1 #  A )
4841, 5, 47subap0d 8542 . . . . . . 7  |-  ( ph  ->  ( 1  -  A
) #  0 )
4940, 48recclapd 8677 . . . . . 6  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  e.  CC )
50 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
515adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
5251, 50expcld 10588 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
53 oveq2 5850 . . . . . . . . 9  |-  ( n  =  j  ->  ( A ^ n )  =  ( A ^ j
) )
5453, 26fvmptg 5562 . . . . . . . 8  |-  ( ( j  e.  NN0  /\  ( A ^ j )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  j )  =  ( A ^ j ) )
5550, 52, 54syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  =  ( A ^ j
) )
565, 43, 55geolim 11452 . . . . . 6  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  ~~>  ( 1  /  (
1  -  A ) ) )
57 breldmg 4810 . . . . . 6  |-  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  _V  /\  (
1  /  ( 1  -  A ) )  e.  CC  /\  seq 0 (  +  , 
( n  e.  NN0  |->  ( A ^ n ) ) )  ~~>  ( 1  /  ( 1  -  A ) ) )  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
5837, 49, 56, 57mp3an2i 1332 . . . . 5  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
59 nn0uz 9500 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
60 expcl 10473 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ j
)  e.  CC )
615, 60sylan 281 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
6255, 61eqeltrd 2243 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  e.  CC )
6359, 2, 62iserex 11280 . . . . 5  |-  ( ph  ->  (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  dom  ~~>  ) )
6458, 63mpbid 146 . . . 4  |-  ( ph  ->  seq M (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
6536, 64eqeltrrd 2244 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
661, 3, 4, 9, 65isumclim2 11363 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) )
67 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
685adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  e.  CC )
6968, 67expcld 10588 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  CC )
7067, 69, 31syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
71 expcl 10473 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
725, 71sylan 281 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  CC )
7359, 1, 2, 70, 72, 58isumsplit 11432 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  NN0  ( A ^ k )  =  ( sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^
k )  +  sum_ k  e.  ( ZZ>= `  M ) ( A ^ k ) ) )
74 0zd 9203 . . . . . . 7  |-  ( ph  ->  0  e.  ZZ )
7559, 74, 70, 72, 56isumclim 11362 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  NN0  ( A ^ k )  =  ( 1  / 
( 1  -  A
) ) )
7673, 75eqtr3d 2200 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^ k
)  +  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) )  =  ( 1  /  ( 1  -  A ) ) )
775, 44, 2geoserap 11448 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )
7877oveq1d 5857 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^ k
)  +  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) )  =  ( ( ( 1  -  ( A ^ M
) )  /  (
1  -  A ) )  +  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) ) )
7976, 78eqtr3d 2200 . . . 4  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  =  ( ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) )  + 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) ) )
8079oveq1d 5857 . . 3  |-  ( ph  ->  ( ( 1  / 
( 1  -  A
) )  -  (
( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )  =  ( ( ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) )  + 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) )  -  ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) ) )
815, 2expcld 10588 . . . . . 6  |-  ( ph  ->  ( A ^ M
)  e.  CC )
82 subcl 8097 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( A ^ M )  e.  CC )  -> 
( 1  -  ( A ^ M ) )  e.  CC )
8338, 81, 82sylancr 411 . . . . 5  |-  ( ph  ->  ( 1  -  ( A ^ M ) )  e.  CC )
8441, 83, 40, 48divsubdirapd 8726 . . . 4  |-  ( ph  ->  ( ( 1  -  ( 1  -  ( A ^ M ) ) )  /  ( 1  -  A ) )  =  ( ( 1  /  ( 1  -  A ) )  -  ( ( 1  -  ( A ^ M
) )  /  (
1  -  A ) ) ) )
85 nncan 8127 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( A ^ M )  e.  CC )  -> 
( 1  -  (
1  -  ( A ^ M ) ) )  =  ( A ^ M ) )
8638, 81, 85sylancr 411 . . . . 5  |-  ( ph  ->  ( 1  -  (
1  -  ( A ^ M ) ) )  =  ( A ^ M ) )
8786oveq1d 5857 . . . 4  |-  ( ph  ->  ( ( 1  -  ( 1  -  ( A ^ M ) ) )  /  ( 1  -  A ) )  =  ( ( A ^ M )  / 
( 1  -  A
) ) )
8884, 87eqtr3d 2200 . . 3  |-  ( ph  ->  ( ( 1  / 
( 1  -  A
) )  -  (
( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )  =  ( ( A ^ M )  / 
( 1  -  A
) ) )
8983, 40, 48divclapd 8686 . . . 4  |-  ( ph  ->  ( ( 1  -  ( A ^ M
) )  /  (
1  -  A ) )  e.  CC )
901, 3, 32, 9, 64isumcl 11366 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k )  e.  CC )
9189, 90pncan2d 8211 . . 3  |-  ( ph  ->  ( ( ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) )  + 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) )  -  ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )  =  sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) )
9280, 88, 913eqtr3rd 2207 . 2  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k )  =  ( ( A ^ M )  / 
( 1  -  A
) ) )
9366, 92breqtrd 4008 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   class class class wbr 3982    |-> cmpt 4043   dom cdm 4604   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    < clt 7933    <_ cle 7934    - cmin 8069   # cap 8479    / cdiv 8568   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944    seqcseq 10380   ^cexp 10454   abscabs 10939    ~~> cli 11219   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  geoisum1  11460  geoisum1c  11461  trilpolemisumle  13917
  Copyright terms: Public domain W3C validator