| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > geolim2 | Unicode version | ||
| Description: The partial sums in the
geometric series |
| Ref | Expression |
|---|---|
| geolim.1 |
|
| geolim.2 |
|
| geolim2.3 |
|
| geolim2.4 |
|
| Ref | Expression |
|---|---|
| geolim2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . 3
| |
| 2 | geolim2.3 |
. . . 4
| |
| 3 | 2 | nn0zd 9563 |
. . 3
|
| 4 | geolim2.4 |
. . 3
| |
| 5 | geolim.1 |
. . . . 5
| |
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | eluznn0 9790 |
. . . . 5
| |
| 8 | 2, 7 | sylan 283 |
. . . 4
|
| 9 | 6, 8 | expcld 10890 |
. . 3
|
| 10 | eluzelz 9727 |
. . . . . . . . 9
| |
| 11 | 10 | adantl 277 |
. . . . . . . 8
|
| 12 | 0red 8143 |
. . . . . . . . 9
| |
| 13 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 14 | 13 | zred 9565 |
. . . . . . . . 9
|
| 15 | 11 | zred 9565 |
. . . . . . . . 9
|
| 16 | 2 | nn0ge0d 9421 |
. . . . . . . . . 10
|
| 17 | 16 | adantr 276 |
. . . . . . . . 9
|
| 18 | eluzle 9730 |
. . . . . . . . . 10
| |
| 19 | 18 | adantl 277 |
. . . . . . . . 9
|
| 20 | 12, 14, 15, 17, 19 | letrd 8266 |
. . . . . . . 8
|
| 21 | elnn0z 9455 |
. . . . . . . 8
| |
| 22 | 11, 20, 21 | sylanbrc 417 |
. . . . . . 7
|
| 23 | 5 | adantr 276 |
. . . . . . . 8
|
| 24 | 23, 22 | expcld 10890 |
. . . . . . 7
|
| 25 | oveq2 6008 |
. . . . . . . 8
| |
| 26 | eqid 2229 |
. . . . . . . 8
| |
| 27 | 25, 26 | fvmptg 5709 |
. . . . . . 7
|
| 28 | 22, 24, 27 | syl2anc 411 |
. . . . . 6
|
| 29 | 28, 24 | eqeltrd 2306 |
. . . . 5
|
| 30 | oveq2 6008 |
. . . . . . . 8
| |
| 31 | 30, 26 | fvmptg 5709 |
. . . . . . 7
|
| 32 | 8, 9, 31 | syl2anc 411 |
. . . . . 6
|
| 33 | 32, 4 | eqtr4d 2265 |
. . . . 5
|
| 34 | addcl 8120 |
. . . . . 6
| |
| 35 | 34 | adantl 277 |
. . . . 5
|
| 36 | 3, 29, 33, 35 | seq3feq 10697 |
. . . 4
|
| 37 | seqex 10666 |
. . . . . 6
| |
| 38 | ax-1cn 8088 |
. . . . . . . 8
| |
| 39 | subcl 8341 |
. . . . . . . 8
| |
| 40 | 38, 5, 39 | sylancr 414 |
. . . . . . 7
|
| 41 | 1cnd 8158 |
. . . . . . . 8
| |
| 42 | 1red 8157 |
. . . . . . . . . 10
| |
| 43 | geolim.2 |
. . . . . . . . . 10
| |
| 44 | 5, 42, 43 | absltap 12015 |
. . . . . . . . 9
|
| 45 | apsym 8749 |
. . . . . . . . . 10
| |
| 46 | 5, 41, 45 | syl2anc 411 |
. . . . . . . . 9
|
| 47 | 44, 46 | mpbid 147 |
. . . . . . . 8
|
| 48 | 41, 5, 47 | subap0d 8787 |
. . . . . . 7
|
| 49 | 40, 48 | recclapd 8924 |
. . . . . 6
|
| 50 | simpr 110 |
. . . . . . . 8
| |
| 51 | 5 | adantr 276 |
. . . . . . . . 9
|
| 52 | 51, 50 | expcld 10890 |
. . . . . . . 8
|
| 53 | oveq2 6008 |
. . . . . . . . 9
| |
| 54 | 53, 26 | fvmptg 5709 |
. . . . . . . 8
|
| 55 | 50, 52, 54 | syl2anc 411 |
. . . . . . 7
|
| 56 | 5, 43, 55 | geolim 12017 |
. . . . . 6
|
| 57 | breldmg 4928 |
. . . . . 6
| |
| 58 | 37, 49, 56, 57 | mp3an2i 1376 |
. . . . 5
|
| 59 | nn0uz 9753 |
. . . . . 6
| |
| 60 | expcl 10774 |
. . . . . . . 8
| |
| 61 | 5, 60 | sylan 283 |
. . . . . . 7
|
| 62 | 55, 61 | eqeltrd 2306 |
. . . . . 6
|
| 63 | 59, 2, 62 | iserex 11845 |
. . . . 5
|
| 64 | 58, 63 | mpbid 147 |
. . . 4
|
| 65 | 36, 64 | eqeltrrd 2307 |
. . 3
|
| 66 | 1, 3, 4, 9, 65 | isumclim2 11928 |
. 2
|
| 67 | simpr 110 |
. . . . . . . 8
| |
| 68 | 5 | adantr 276 |
. . . . . . . . 9
|
| 69 | 68, 67 | expcld 10890 |
. . . . . . . 8
|
| 70 | 67, 69, 31 | syl2anc 411 |
. . . . . . 7
|
| 71 | expcl 10774 |
. . . . . . . 8
| |
| 72 | 5, 71 | sylan 283 |
. . . . . . 7
|
| 73 | 59, 1, 2, 70, 72, 58 | isumsplit 11997 |
. . . . . 6
|
| 74 | 0zd 9454 |
. . . . . . 7
| |
| 75 | 59, 74, 70, 72, 56 | isumclim 11927 |
. . . . . 6
|
| 76 | 73, 75 | eqtr3d 2264 |
. . . . 5
|
| 77 | 5, 44, 2 | geoserap 12013 |
. . . . . 6
|
| 78 | 77 | oveq1d 6015 |
. . . . 5
|
| 79 | 76, 78 | eqtr3d 2264 |
. . . 4
|
| 80 | 79 | oveq1d 6015 |
. . 3
|
| 81 | 5, 2 | expcld 10890 |
. . . . . 6
|
| 82 | subcl 8341 |
. . . . . 6
| |
| 83 | 38, 81, 82 | sylancr 414 |
. . . . 5
|
| 84 | 41, 83, 40, 48 | divsubdirapd 8973 |
. . . 4
|
| 85 | nncan 8371 |
. . . . . 6
| |
| 86 | 38, 81, 85 | sylancr 414 |
. . . . 5
|
| 87 | 86 | oveq1d 6015 |
. . . 4
|
| 88 | 84, 87 | eqtr3d 2264 |
. . 3
|
| 89 | 83, 40, 48 | divclapd 8933 |
. . . 4
|
| 90 | 1, 3, 32, 9, 64 | isumcl 11931 |
. . . 4
|
| 91 | 89, 90 | pncan2d 8455 |
. . 3
|
| 92 | 80, 88, 91 | 3eqtr3rd 2271 |
. 2
|
| 93 | 66, 92 | breqtrd 4108 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-ihash 10993 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 |
| This theorem is referenced by: geoisum1 12025 geoisum1c 12026 trilpolemisumle 16365 |
| Copyright terms: Public domain | W3C validator |