ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geolim2 Unicode version

Theorem geolim2 11281
Description: The partial sums in the geometric series  A ^ M  +  A ^ ( M  +  1 )... converge to  ( ( A ^ M )  / 
( 1  -  A
) ). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
geolim.1  |-  ( ph  ->  A  e.  CC )
geolim.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
geolim2.3  |-  ( ph  ->  M  e.  NN0 )
geolim2.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( A ^ k ) )
Assertion
Ref Expression
geolim2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, F    k, M    ph, k

Proof of Theorem geolim2
Dummy variables  j  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 geolim2.3 . . . 4  |-  ( ph  ->  M  e.  NN0 )
32nn0zd 9171 . . 3  |-  ( ph  ->  M  e.  ZZ )
4 geolim2.4 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( A ^ k ) )
5 geolim.1 . . . . 5  |-  ( ph  ->  A  e.  CC )
65adantr 274 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
7 eluznn0 9393 . . . . 5  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
82, 7sylan 281 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  NN0 )
96, 8expcld 10424 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ k )  e.  CC )
10 eluzelz 9335 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
1110adantl 275 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ZZ )
12 0red 7767 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  e.  RR )
133adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
1413zred 9173 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  RR )
1511zred 9173 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  RR )
162nn0ge0d 9033 . . . . . . . . . 10  |-  ( ph  ->  0  <_  M )
1716adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  <_  M )
18 eluzle 9338 . . . . . . . . . 10  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
1918adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  <_  x )
2012, 14, 15, 17, 19letrd 7886 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  0  <_  x )
21 elnn0z 9067 . . . . . . . 8  |-  ( x  e.  NN0  <->  ( x  e.  ZZ  /\  0  <_  x ) )
2211, 20, 21sylanbrc 413 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  NN0 )
235adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
2423, 22expcld 10424 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( A ^ x )  e.  CC )
25 oveq2 5782 . . . . . . . 8  |-  ( n  =  x  ->  ( A ^ n )  =  ( A ^ x
) )
26 eqid 2139 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
2725, 26fvmptg 5497 . . . . . . 7  |-  ( ( x  e.  NN0  /\  ( A ^ x )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  x )  =  ( A ^ x ) )
2822, 24, 27syl2anc 408 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 x )  =  ( A ^ x
) )
2928, 24eqeltrd 2216 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 x )  e.  CC )
30 oveq2 5782 . . . . . . . 8  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
3130, 26fvmptg 5497 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
328, 9, 31syl2anc 408 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
3332, 4eqtr4d 2175 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( F `  k
) )
34 addcl 7745 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3534adantl 275 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
363, 29, 33, 35seq3feq 10245 . . . 4  |-  ( ph  ->  seq M (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  =  seq M (  +  ,  F ) )
37 seqex 10220 . . . . . 6  |-  seq 0
(  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  _V
38 ax-1cn 7713 . . . . . . . 8  |-  1  e.  CC
39 subcl 7961 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
4038, 5, 39sylancr 410 . . . . . . 7  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
41 1cnd 7782 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
42 1red 7781 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
43 geolim.2 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  A
)  <  1 )
445, 42, 43absltap 11278 . . . . . . . . 9  |-  ( ph  ->  A #  1 )
45 apsym 8368 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A #  1  <->  1 #  A ) )
465, 41, 45syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  ( A #  1  <->  1 #  A ) )
4744, 46mpbid 146 . . . . . . . 8  |-  ( ph  ->  1 #  A )
4841, 5, 47subap0d 8406 . . . . . . 7  |-  ( ph  ->  ( 1  -  A
) #  0 )
4940, 48recclapd 8541 . . . . . 6  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  e.  CC )
50 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
515adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
5251, 50expcld 10424 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
53 oveq2 5782 . . . . . . . . 9  |-  ( n  =  j  ->  ( A ^ n )  =  ( A ^ j
) )
5453, 26fvmptg 5497 . . . . . . . 8  |-  ( ( j  e.  NN0  /\  ( A ^ j )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  j )  =  ( A ^ j ) )
5550, 52, 54syl2anc 408 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  =  ( A ^ j
) )
565, 43, 55geolim 11280 . . . . . 6  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  ~~>  ( 1  /  (
1  -  A ) ) )
57 breldmg 4745 . . . . . 6  |-  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  _V  /\  (
1  /  ( 1  -  A ) )  e.  CC  /\  seq 0 (  +  , 
( n  e.  NN0  |->  ( A ^ n ) ) )  ~~>  ( 1  /  ( 1  -  A ) ) )  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
5837, 49, 56, 57mp3an2i 1320 . . . . 5  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
59 nn0uz 9360 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
60 expcl 10311 . . . . . . . 8  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ j
)  e.  CC )
615, 60sylan 281 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
6255, 61eqeltrd 2216 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  e.  CC )
6359, 2, 62iserex 11108 . . . . 5  |-  ( ph  ->  (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN0  |->  ( A ^ n ) ) )  e.  dom  ~~>  ) )
6458, 63mpbid 146 . . . 4  |-  ( ph  ->  seq M (  +  ,  ( n  e. 
NN0  |->  ( A ^
n ) ) )  e.  dom  ~~>  )
6536, 64eqeltrrd 2217 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
661, 3, 4, 9, 65isumclim2 11191 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) )
67 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
685adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  e.  CC )
6968, 67expcld 10424 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  CC )
7067, 69, 31syl2anc 408 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
71 expcl 10311 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
725, 71sylan 281 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  CC )
7359, 1, 2, 70, 72, 58isumsplit 11260 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  NN0  ( A ^ k )  =  ( sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^
k )  +  sum_ k  e.  ( ZZ>= `  M ) ( A ^ k ) ) )
74 0zd 9066 . . . . . . 7  |-  ( ph  ->  0  e.  ZZ )
7559, 74, 70, 72, 56isumclim 11190 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  NN0  ( A ^ k )  =  ( 1  / 
( 1  -  A
) ) )
7673, 75eqtr3d 2174 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^ k
)  +  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) )  =  ( 1  /  ( 1  -  A ) ) )
775, 44, 2geoserap 11276 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )
7877oveq1d 5789 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( M  -  1 ) ) ( A ^ k
)  +  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) )  =  ( ( ( 1  -  ( A ^ M
) )  /  (
1  -  A ) )  +  sum_ k  e.  ( ZZ>= `  M )
( A ^ k
) ) )
7976, 78eqtr3d 2174 . . . 4  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  =  ( ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) )  + 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) ) )
8079oveq1d 5789 . . 3  |-  ( ph  ->  ( ( 1  / 
( 1  -  A
) )  -  (
( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )  =  ( ( ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) )  + 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) )  -  ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) ) )
815, 2expcld 10424 . . . . . 6  |-  ( ph  ->  ( A ^ M
)  e.  CC )
82 subcl 7961 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( A ^ M )  e.  CC )  -> 
( 1  -  ( A ^ M ) )  e.  CC )
8338, 81, 82sylancr 410 . . . . 5  |-  ( ph  ->  ( 1  -  ( A ^ M ) )  e.  CC )
8441, 83, 40, 48divsubdirapd 8590 . . . 4  |-  ( ph  ->  ( ( 1  -  ( 1  -  ( A ^ M ) ) )  /  ( 1  -  A ) )  =  ( ( 1  /  ( 1  -  A ) )  -  ( ( 1  -  ( A ^ M
) )  /  (
1  -  A ) ) ) )
85 nncan 7991 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( A ^ M )  e.  CC )  -> 
( 1  -  (
1  -  ( A ^ M ) ) )  =  ( A ^ M ) )
8638, 81, 85sylancr 410 . . . . 5  |-  ( ph  ->  ( 1  -  (
1  -  ( A ^ M ) ) )  =  ( A ^ M ) )
8786oveq1d 5789 . . . 4  |-  ( ph  ->  ( ( 1  -  ( 1  -  ( A ^ M ) ) )  /  ( 1  -  A ) )  =  ( ( A ^ M )  / 
( 1  -  A
) ) )
8884, 87eqtr3d 2174 . . 3  |-  ( ph  ->  ( ( 1  / 
( 1  -  A
) )  -  (
( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )  =  ( ( A ^ M )  / 
( 1  -  A
) ) )
8983, 40, 48divclapd 8550 . . . 4  |-  ( ph  ->  ( ( 1  -  ( A ^ M
) )  /  (
1  -  A ) )  e.  CC )
901, 3, 32, 9, 64isumcl 11194 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k )  e.  CC )
9189, 90pncan2d 8075 . . 3  |-  ( ph  ->  ( ( ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) )  + 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) )  -  ( ( 1  -  ( A ^ M ) )  /  ( 1  -  A ) ) )  =  sum_ k  e.  (
ZZ>= `  M ) ( A ^ k ) )
9280, 88, 913eqtr3rd 2181 . 2  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( A ^ k )  =  ( ( A ^ M )  / 
( 1  -  A
) ) )
9366, 92breqtrd 3954 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   _Vcvv 2686   class class class wbr 3929    |-> cmpt 3989   dom cdm 4539   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    < clt 7800    <_ cle 7801    - cmin 7933   # cap 8343    / cdiv 8432   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790    seqcseq 10218   ^cexp 10292   abscabs 10769    ~~> cli 11047   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  geoisum1  11288  geoisum1c  11289  trilpolemisumle  13231
  Copyright terms: Public domain W3C validator