| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > geolim2 | Unicode version | ||
| Description: The partial sums in the
geometric series |
| Ref | Expression |
|---|---|
| geolim.1 |
|
| geolim.2 |
|
| geolim2.3 |
|
| geolim2.4 |
|
| Ref | Expression |
|---|---|
| geolim2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. . 3
| |
| 2 | geolim2.3 |
. . . 4
| |
| 3 | 2 | nn0zd 9492 |
. . 3
|
| 4 | geolim2.4 |
. . 3
| |
| 5 | geolim.1 |
. . . . 5
| |
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | eluznn0 9719 |
. . . . 5
| |
| 8 | 2, 7 | sylan 283 |
. . . 4
|
| 9 | 6, 8 | expcld 10816 |
. . 3
|
| 10 | eluzelz 9656 |
. . . . . . . . 9
| |
| 11 | 10 | adantl 277 |
. . . . . . . 8
|
| 12 | 0red 8072 |
. . . . . . . . 9
| |
| 13 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 14 | 13 | zred 9494 |
. . . . . . . . 9
|
| 15 | 11 | zred 9494 |
. . . . . . . . 9
|
| 16 | 2 | nn0ge0d 9350 |
. . . . . . . . . 10
|
| 17 | 16 | adantr 276 |
. . . . . . . . 9
|
| 18 | eluzle 9659 |
. . . . . . . . . 10
| |
| 19 | 18 | adantl 277 |
. . . . . . . . 9
|
| 20 | 12, 14, 15, 17, 19 | letrd 8195 |
. . . . . . . 8
|
| 21 | elnn0z 9384 |
. . . . . . . 8
| |
| 22 | 11, 20, 21 | sylanbrc 417 |
. . . . . . 7
|
| 23 | 5 | adantr 276 |
. . . . . . . 8
|
| 24 | 23, 22 | expcld 10816 |
. . . . . . 7
|
| 25 | oveq2 5951 |
. . . . . . . 8
| |
| 26 | eqid 2204 |
. . . . . . . 8
| |
| 27 | 25, 26 | fvmptg 5654 |
. . . . . . 7
|
| 28 | 22, 24, 27 | syl2anc 411 |
. . . . . 6
|
| 29 | 28, 24 | eqeltrd 2281 |
. . . . 5
|
| 30 | oveq2 5951 |
. . . . . . . 8
| |
| 31 | 30, 26 | fvmptg 5654 |
. . . . . . 7
|
| 32 | 8, 9, 31 | syl2anc 411 |
. . . . . 6
|
| 33 | 32, 4 | eqtr4d 2240 |
. . . . 5
|
| 34 | addcl 8049 |
. . . . . 6
| |
| 35 | 34 | adantl 277 |
. . . . 5
|
| 36 | 3, 29, 33, 35 | seq3feq 10623 |
. . . 4
|
| 37 | seqex 10592 |
. . . . . 6
| |
| 38 | ax-1cn 8017 |
. . . . . . . 8
| |
| 39 | subcl 8270 |
. . . . . . . 8
| |
| 40 | 38, 5, 39 | sylancr 414 |
. . . . . . 7
|
| 41 | 1cnd 8087 |
. . . . . . . 8
| |
| 42 | 1red 8086 |
. . . . . . . . . 10
| |
| 43 | geolim.2 |
. . . . . . . . . 10
| |
| 44 | 5, 42, 43 | absltap 11762 |
. . . . . . . . 9
|
| 45 | apsym 8678 |
. . . . . . . . . 10
| |
| 46 | 5, 41, 45 | syl2anc 411 |
. . . . . . . . 9
|
| 47 | 44, 46 | mpbid 147 |
. . . . . . . 8
|
| 48 | 41, 5, 47 | subap0d 8716 |
. . . . . . 7
|
| 49 | 40, 48 | recclapd 8853 |
. . . . . 6
|
| 50 | simpr 110 |
. . . . . . . 8
| |
| 51 | 5 | adantr 276 |
. . . . . . . . 9
|
| 52 | 51, 50 | expcld 10816 |
. . . . . . . 8
|
| 53 | oveq2 5951 |
. . . . . . . . 9
| |
| 54 | 53, 26 | fvmptg 5654 |
. . . . . . . 8
|
| 55 | 50, 52, 54 | syl2anc 411 |
. . . . . . 7
|
| 56 | 5, 43, 55 | geolim 11764 |
. . . . . 6
|
| 57 | breldmg 4883 |
. . . . . 6
| |
| 58 | 37, 49, 56, 57 | mp3an2i 1354 |
. . . . 5
|
| 59 | nn0uz 9682 |
. . . . . 6
| |
| 60 | expcl 10700 |
. . . . . . . 8
| |
| 61 | 5, 60 | sylan 283 |
. . . . . . 7
|
| 62 | 55, 61 | eqeltrd 2281 |
. . . . . 6
|
| 63 | 59, 2, 62 | iserex 11592 |
. . . . 5
|
| 64 | 58, 63 | mpbid 147 |
. . . 4
|
| 65 | 36, 64 | eqeltrrd 2282 |
. . 3
|
| 66 | 1, 3, 4, 9, 65 | isumclim2 11675 |
. 2
|
| 67 | simpr 110 |
. . . . . . . 8
| |
| 68 | 5 | adantr 276 |
. . . . . . . . 9
|
| 69 | 68, 67 | expcld 10816 |
. . . . . . . 8
|
| 70 | 67, 69, 31 | syl2anc 411 |
. . . . . . 7
|
| 71 | expcl 10700 |
. . . . . . . 8
| |
| 72 | 5, 71 | sylan 283 |
. . . . . . 7
|
| 73 | 59, 1, 2, 70, 72, 58 | isumsplit 11744 |
. . . . . 6
|
| 74 | 0zd 9383 |
. . . . . . 7
| |
| 75 | 59, 74, 70, 72, 56 | isumclim 11674 |
. . . . . 6
|
| 76 | 73, 75 | eqtr3d 2239 |
. . . . 5
|
| 77 | 5, 44, 2 | geoserap 11760 |
. . . . . 6
|
| 78 | 77 | oveq1d 5958 |
. . . . 5
|
| 79 | 76, 78 | eqtr3d 2239 |
. . . 4
|
| 80 | 79 | oveq1d 5958 |
. . 3
|
| 81 | 5, 2 | expcld 10816 |
. . . . . 6
|
| 82 | subcl 8270 |
. . . . . 6
| |
| 83 | 38, 81, 82 | sylancr 414 |
. . . . 5
|
| 84 | 41, 83, 40, 48 | divsubdirapd 8902 |
. . . 4
|
| 85 | nncan 8300 |
. . . . . 6
| |
| 86 | 38, 81, 85 | sylancr 414 |
. . . . 5
|
| 87 | 86 | oveq1d 5958 |
. . . 4
|
| 88 | 84, 87 | eqtr3d 2239 |
. . 3
|
| 89 | 83, 40, 48 | divclapd 8862 |
. . . 4
|
| 90 | 1, 3, 32, 9, 64 | isumcl 11678 |
. . . 4
|
| 91 | 89, 90 | pncan2d 8384 |
. . 3
|
| 92 | 80, 88, 91 | 3eqtr3rd 2246 |
. 2
|
| 93 | 66, 92 | breqtrd 4069 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 |
| This theorem is referenced by: geoisum1 11772 geoisum1c 11773 trilpolemisumle 15910 |
| Copyright terms: Public domain | W3C validator |