Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemeq1 Unicode version

Theorem trilpolemeq1 13233
Description: Lemma for trilpo 13236. The  A  =  1 case. This is proved by noting that if any  ( F `  x
) is zero, then the infinite sum  A is less than one based on the term which is zero. We are using the fact that the  F sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemgt1.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
trilpolemeq1.a  |-  ( ph  ->  A  =  1 )
Assertion
Ref Expression
trilpolemeq1  |-  ( ph  ->  A. x  e.  NN  ( F `  x )  =  1 )
Distinct variable groups:    i, F    ph, i, x
Allowed substitution hints:    A( x, i)    F( x)

Proof of Theorem trilpolemeq1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 trilpolemeq1.a . . . . 5  |-  ( ph  ->  A  =  1 )
21ad2antrr 479 . . . 4  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  =  1 )
3 trilpolemgt1.f . . . . . . . 8  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
4 trilpolemgt1.a . . . . . . . 8  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
53, 4trilpolemcl 13230 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
65ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  e.  RR )
7 nnuz 9361 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
8 eqid 2139 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  ( x  +  1
) )  =  (
ZZ>= `  ( x  + 
1 ) )
9 simplr 519 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  x  e.  NN )
109peano2nnd 8735 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( x  +  1 )  e.  NN )
11 eqid 2139 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) )
12 oveq2 5782 . . . . . . . . . . . . . . . . 17  |-  ( n  =  i  ->  (
2 ^ n )  =  ( 2 ^ i ) )
1312oveq2d 5790 . . . . . . . . . . . . . . . 16  |-  ( n  =  i  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ i
) ) )
14 fveq2 5421 . . . . . . . . . . . . . . . 16  |-  ( n  =  i  ->  ( F `  n )  =  ( F `  i ) )
1513, 14oveq12d 5792 . . . . . . . . . . . . . . 15  |-  ( n  =  i  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
16 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  i  e.  NN )
17 2rp 9446 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  RR+
1817a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  2  e.  RR+ )
1916nnzd 9172 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  i  e.  ZZ )
2018, 19rpexpcld 10448 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( 2 ^ i )  e.  RR+ )
2120rpreccld 9494 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
2221rpred 9483 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
23 0re 7766 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
24 1re 7765 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
25 prssi 3678 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
2623, 24, 25mp2an 422 . . . . . . . . . . . . . . . . 17  |-  { 0 ,  1 }  C_  RR
273ad3antrrr 483 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  F : NN --> { 0 ,  1 } )
2827, 16ffvelrnd 5556 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( F `  i )  e.  {
0 ,  1 } )
2926, 28sseldi 3095 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( F `  i )  e.  RR )
3022, 29remulcld 7796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  RR )
3111, 15, 16, 30fvmptd3 5514 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) `
 i )  =  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
) )
3230recnd 7794 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  CC )
333, 11trilpolemclim 13229 . . . . . . . . . . . . . . 15  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
3433ad2antrr 479 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) ) )  e. 
dom 
~~>  )
357, 8, 10, 31, 32, 34isumsplit 11260 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( sum_ i  e.  ( 1 ... (
( x  +  1 )  -  1 ) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) ) ) )
369nncnd 8734 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  x  e.  CC )
37 1cnd 7782 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
1  e.  CC )
3836, 37pncand 8074 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( x  + 
1 )  -  1 )  =  x )
3938oveq2d 5790 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  =  ( 1 ... x ) )
409, 7eleqtrdi 2232 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  x  e.  ( ZZ>= ` 
1 ) )
41 fzisfzounsn 10013 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( ZZ>= `  1
)  ->  ( 1 ... x )  =  ( ( 1..^ x )  u.  { x } ) )
4240, 41syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1 ... x
)  =  ( ( 1..^ x )  u. 
{ x } ) )
4339, 42eqtrd 2172 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  =  ( ( 1..^ x )  u. 
{ x } ) )
4443sumeq1d 11135 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
45 nfv 1508 . . . . . . . . . . . . . . . 16  |-  F/ i ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )
46 nfcv 2281 . . . . . . . . . . . . . . . 16  |-  F/_ i
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)
47 1zzd 9081 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
1  e.  ZZ )
489nnzd 9172 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  x  e.  ZZ )
49 fzofig 10205 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  ZZ  /\  x  e.  ZZ )  ->  ( 1..^ x )  e.  Fin )
5047, 48, 49syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1..^ x )  e.  Fin )
51 fzonel 9937 . . . . . . . . . . . . . . . . 17  |-  -.  x  e.  ( 1..^ x )
5251a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  -.  x  e.  (
1..^ x ) )
5317a1i 9 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  2  e.  RR+ )
54 elfzoelz 9924 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  e.  ( 1..^ x )  ->  i  e.  ZZ )
5554adantl 275 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  i  e.  ZZ )
5653, 55rpexpcld 10448 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( 2 ^ i )  e.  RR+ )
5756rpreccld 9494 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
5857rpred 9483 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
59 elfzouz 9928 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 1..^ x )  ->  i  e.  ( ZZ>= `  1 )
)
6059, 7eleqtrrdi 2233 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 1..^ x )  ->  i  e.  NN )
6160, 29sylan2 284 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( F `  i )  e.  RR )
6258, 61remulcld 7796 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  RR )
6362recnd 7794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  CC )
64 oveq2 5782 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  x  ->  (
2 ^ i )  =  ( 2 ^ x ) )
6564oveq2d 5790 . . . . . . . . . . . . . . . . 17  |-  ( i  =  x  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ x
) ) )
66 fveq2 5421 . . . . . . . . . . . . . . . . 17  |-  ( i  =  x  ->  ( F `  i )  =  ( F `  x ) )
6765, 66oveq12d 5792 . . . . . . . . . . . . . . . 16  |-  ( i  =  x  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( ( 1  /  ( 2 ^ x ) )  x.  ( F `  x
) ) )
6817a1i 9 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
2  e.  RR+ )
6968, 48rpexpcld 10448 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 2 ^ x
)  e.  RR+ )
7069rpreccld 9494 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1  /  (
2 ^ x ) )  e.  RR+ )
7170rpred 9483 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1  /  (
2 ^ x ) )  e.  RR )
723ad2antrr 479 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  F : NN --> { 0 ,  1 } )
7372, 9ffvelrnd 5556 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( F `  x
)  e.  { 0 ,  1 } )
7426, 73sseldi 3095 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( F `  x
)  e.  RR )
7571, 74remulcld 7796 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)  e.  RR )
7675recnd 7794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)  e.  CC )
7745, 46, 50, 9, 52, 63, 67, 76fsumsplitsn 11179 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ( 1..^ x )  u. 
{ x } ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  +  ( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
) ) )
78 simpr 109 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( F `  x
)  =  0 )
7978oveq2d 5790 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)  =  ( ( 1  /  ( 2 ^ x ) )  x.  0 ) )
8070rpcnd 9485 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1  /  (
2 ^ x ) )  e.  CC )
8180mul01d 8155 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  0 )  =  0 )
8279, 81eqtrd 2172 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)  =  0 )
8382oveq2d 5790 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  ( ( 1  /  ( 2 ^ x ) )  x.  ( F `  x
) ) )  =  ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  0 ) )
8444, 77, 833eqtrd 2176 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( sum_ i  e.  ( 1..^ x ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  +  0 ) )
8584oveq1d 5789 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1 ... ( ( x  +  1 )  -  1 ) ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  +  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
) )  =  ( ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  0 )  + 
sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) ) ) )
8635, 85eqtrd 2172 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  +  0 )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) ) ) )
8750, 62fsumrecl 11170 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  e.  RR )
88 0red 7767 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
0  e.  RR )
8987, 88readdcld 7795 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  0 )  e.  RR )
9010nnzd 9172 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( x  +  1 )  e.  ZZ )
91 eluznn 9394 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  +  1 )  e.  NN  /\  i  e.  ( ZZ>= `  ( x  +  1
) ) )  -> 
i  e.  NN )
9210, 91sylan 281 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  i  e.  NN )
9392, 30syldan 280 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  RR )
9411, 15, 92, 93fvmptd3 5514 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) `
 i )  =  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
) )
9531, 32eqeltrd 2216 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) `
 i )  e.  CC )
967, 10, 95iserex 11108 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
(  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  <->  seq (
x  +  1 ) (  +  ,  ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) )  e.  dom  ~~>  ) )
9734, 96mpbid 146 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  seq ( x  +  1 ) (  +  , 
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) ) )  e. 
dom 
~~>  )
988, 90, 94, 93, 97isumrecl 11198 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  e.  RR )
9950, 58fsumrecl 11170 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  e.  RR )
10099, 71readdcld 7795 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  / 
( 2 ^ x
) ) )  e.  RR )
101 eqid 2139 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) )
10292, 21syldan 280 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
103101, 13, 92, 102fvmptd3 5514 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `
 i )  =  ( 1  /  (
2 ^ i ) ) )
10492, 22syldan 280 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
105 seqex 10220 . . . . . . . . . . . . . . . . 17  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  _V
106 ax-1cn 7713 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
107101geo2lim 11285 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  CC  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) )  ~~>  1 )
108106, 107ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  ~~>  1
109 breldmg 4745 . . . . . . . . . . . . . . . . 17  |-  ( (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  _V  /\  1  e.  CC  /\  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  ~~>  1 )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
110105, 106, 108, 109mp3an 1315 . . . . . . . . . . . . . . . 16  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>
111110a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) )  e. 
dom 
~~>  )
112101, 13, 16, 21fvmptd3 5514 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `
 i )  =  ( 1  /  (
2 ^ i ) ) )
11321rpcnd 9485 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  CC )
114112, 113eqeltrd 2216 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `
 i )  e.  CC )
1157, 10, 114iserex 11108 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
(  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  <->  seq (
x  +  1 ) (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  ) )
116111, 115mpbid 146 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  seq ( x  +  1 ) (  +  , 
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) )  e. 
dom 
~~>  )
1178, 90, 103, 104, 116isumrecl 11198 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) )  e.  RR )
118 simpr 109 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  ( F `  i )  =  0 )
119118oveq2d 5790 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  0 ) )
12057adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
1  /  ( 2 ^ i ) )  e.  RR+ )
121120rpcnd 9485 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
1  /  ( 2 ^ i ) )  e.  CC )
122121mul01d 8155 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
( 1  /  (
2 ^ i ) )  x.  0 )  =  0 )
123119, 122eqtrd 2172 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  0 )
124120rpge0d 9487 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  0  <_  ( 1  /  (
2 ^ i ) ) )
125123, 124eqbrtrd 3950 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
126 simpr 109 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  ( F `  i )  =  1 )
127126oveq2d 5790 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  1 ) )
12858adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
1  /  ( 2 ^ i ) )  e.  RR )
129128recnd 7794 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
1  /  ( 2 ^ i ) )  e.  CC )
130129mulid1d 7783 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
( 1  /  (
2 ^ i ) )  x.  1 )  =  ( 1  / 
( 2 ^ i
) ) )
131127, 130eqtrd 2172 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( 1  / 
( 2 ^ i
) ) )
132128leidd 8276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
1  /  ( 2 ^ i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
133131, 132eqbrtrd 3950 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
13472adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  F : NN --> { 0 ,  1 } )
13560adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  i  e.  NN )
136134, 135ffvelrnd 5556 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( F `  i )  e.  {
0 ,  1 } )
137 elpri 3550 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  i )  e.  { 0 ,  1 }  ->  (
( F `  i
)  =  0  \/  ( F `  i
)  =  1 ) )
138136, 137syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( ( F `
 i )  =  0  \/  ( F `
 i )  =  1 ) )
139125, 133, 138mpjaodan 787 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  <_  (
1  /  ( 2 ^ i ) ) )
14050, 62, 58, 139fsumle 11232 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  <_  sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) ) )
14170rpgt0d 9486 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
0  <  ( 1  /  ( 2 ^ x ) ) )
14287, 88, 99, 71, 140, 141leltaddd 8328 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  0 )  < 
( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  / 
( 2 ^ x
) ) ) )
14372, 4, 8, 10trilpolemisumle 13231 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  <_  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) )
14489, 98, 100, 117, 142, 143ltleaddd 8327 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( sum_ i  e.  ( 1..^ x ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  +  0 )  +  sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) ) )  <  ( (
sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  / 
( 2 ^ x
) ) )  + 
sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( 1  /  ( 2 ^ i ) ) ) )
14586, 144eqbrtrd 3950 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <  ( ( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  /  (
2 ^ x ) ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
1464, 145eqbrtrid 3963 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  ( ( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  /  (
2 ^ x ) ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
147 nfcv 2281 . . . . . . . . . . . 12  |-  F/_ i
( 1  /  (
2 ^ x ) )
14857rpcnd 9485 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  CC )
14945, 147, 50, 9, 52, 148, 65, 80fsumsplitsn 11179 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ( 1..^ x )  u. 
{ x } ) ( 1  /  (
2 ^ i ) )  =  ( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  /  (
2 ^ x ) ) ) )
150149oveq1d 5789 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) )  =  ( ( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  /  (
2 ^ x ) ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
151146, 150breqtrrd 3956 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  ( sum_ i  e.  ( ( 1..^ x )  u.  { x } ) ( 1  /  ( 2 ^ i ) )  + 
sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( 1  /  ( 2 ^ i ) ) ) )
15242sumeq1d 11135 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1 ... x ) ( 1  /  ( 2 ^ i ) )  =  sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( 1  / 
( 2 ^ i
) ) )
153152oveq1d 5789 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1 ... x ) ( 1  /  (
2 ^ i ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( 1  /  (
2 ^ i ) ) )  =  (
sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
154151, 153breqtrrd 3956 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  ( sum_ i  e.  ( 1 ... x
) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
1557, 8, 10, 112, 113, 111isumsplit 11260 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
1  /  ( 2 ^ i ) )  =  ( sum_ i  e.  ( 1 ... (
( x  +  1 )  -  1 ) ) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
15639sumeq1d 11135 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( 1  /  ( 2 ^ i ) )  =  sum_ i  e.  ( 1 ... x ) ( 1  /  (
2 ^ i ) ) )
157156oveq1d 5789 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1 ... ( ( x  +  1 )  -  1 ) ) ( 1  /  (
2 ^ i ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( 1  /  (
2 ^ i ) ) )  =  (
sum_ i  e.  ( 1 ... x ) ( 1  /  (
2 ^ i ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( 1  /  (
2 ^ i ) ) ) )
158155, 157eqtrd 2172 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
1  /  ( 2 ^ i ) )  =  ( sum_ i  e.  ( 1 ... x
) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
159154, 158breqtrrd 3956 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  sum_ i  e.  NN  ( 1  /  (
2 ^ i ) ) )
160 geoihalfsum 11291 . . . . . . 7  |-  sum_ i  e.  NN  ( 1  / 
( 2 ^ i
) )  =  1
161159, 160breqtrdi 3969 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  1 )
1626, 161ltned 7877 . . . . 5  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  =/=  1 )
163162neneqd 2329 . . . 4  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  -.  A  =  1
)
1642, 163pm2.65da 650 . . 3  |-  ( (
ph  /\  x  e.  NN )  ->  -.  ( F `  x )  =  0 )
1653ffvelrnda 5555 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e. 
{ 0 ,  1 } )
166 elpri 3550 . . . . 5  |-  ( ( F `  x )  e.  { 0 ,  1 }  ->  (
( F `  x
)  =  0  \/  ( F `  x
)  =  1 ) )
167165, 166syl 14 . . . 4  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( F `  x )  =  0  \/  ( F `  x )  =  1 ) )
168167orcomd 718 . . 3  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( F `  x )  =  1  \/  ( F `  x )  =  0 ) )
169164, 168ecased 1327 . 2  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  =  1 )
170169ralrimiva 2505 1  |-  ( ph  ->  A. x  e.  NN  ( F `  x )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480   A.wral 2416   _Vcvv 2686    u. cun 3069    C_ wss 3071   {csn 3527   {cpr 3528   class class class wbr 3929    |-> cmpt 3989   dom cdm 4539   -->wf 5119   ` cfv 5123  (class class class)co 5774   Fincfn 6634   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    < clt 7800    <_ cle 7801    - cmin 7933    / cdiv 8432   NNcn 8720   2c2 8771   ZZcz 9054   ZZ>=cuz 9326   RR+crp 9441   ...cfz 9790  ..^cfzo 9919    seqcseq 10218   ^cexp 10292    ~~> cli 11047   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  trilpolemres  13235
  Copyright terms: Public domain W3C validator