Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemeq1 Unicode version

Theorem trilpolemeq1 12925
Description: Lemma for trilpo 12928. The  A  =  1 case. This is proved by noting that if any  ( F `  x
) is zero, then the infinite sum  A is less than one based on the term which is zero. We are using the fact that the  F sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemgt1.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
trilpolemeq1.a  |-  ( ph  ->  A  =  1 )
Assertion
Ref Expression
trilpolemeq1  |-  ( ph  ->  A. x  e.  NN  ( F `  x )  =  1 )
Distinct variable groups:    i, F    ph, i, x
Allowed substitution hints:    A( x, i)    F( x)

Proof of Theorem trilpolemeq1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 trilpolemeq1.a . . . . 5  |-  ( ph  ->  A  =  1 )
21ad2antrr 477 . . . 4  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  =  1 )
3 trilpolemgt1.f . . . . . . . 8  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
4 trilpolemgt1.a . . . . . . . 8  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
53, 4trilpolemcl 12922 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
65ad2antrr 477 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  e.  RR )
7 nnuz 9263 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
8 eqid 2115 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  ( x  +  1
) )  =  (
ZZ>= `  ( x  + 
1 ) )
9 simplr 502 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  x  e.  NN )
109peano2nnd 8645 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( x  +  1 )  e.  NN )
11 eqid 2115 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) )
12 oveq2 5736 . . . . . . . . . . . . . . . . 17  |-  ( n  =  i  ->  (
2 ^ n )  =  ( 2 ^ i ) )
1312oveq2d 5744 . . . . . . . . . . . . . . . 16  |-  ( n  =  i  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ i
) ) )
14 fveq2 5375 . . . . . . . . . . . . . . . 16  |-  ( n  =  i  ->  ( F `  n )  =  ( F `  i ) )
1513, 14oveq12d 5746 . . . . . . . . . . . . . . 15  |-  ( n  =  i  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
16 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  i  e.  NN )
17 2rp 9348 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  RR+
1817a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  2  e.  RR+ )
1916nnzd 9076 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  i  e.  ZZ )
2018, 19rpexpcld 10341 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( 2 ^ i )  e.  RR+ )
2120rpreccld 9393 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
2221rpred 9382 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
23 0re 7690 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
24 1re 7689 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
25 prssi 3644 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
2623, 24, 25mp2an 420 . . . . . . . . . . . . . . . . 17  |-  { 0 ,  1 }  C_  RR
273ad3antrrr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  F : NN --> { 0 ,  1 } )
2827, 16ffvelrnd 5510 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( F `  i )  e.  {
0 ,  1 } )
2926, 28sseldi 3061 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( F `  i )  e.  RR )
3022, 29remulcld 7720 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  RR )
3111, 15, 16, 30fvmptd3 5468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) `
 i )  =  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
) )
3230recnd 7718 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  CC )
333, 11trilpolemclim 12921 . . . . . . . . . . . . . . 15  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
3433ad2antrr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) ) )  e. 
dom 
~~>  )
357, 8, 10, 31, 32, 34isumsplit 11152 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( sum_ i  e.  ( 1 ... (
( x  +  1 )  -  1 ) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) ) ) )
369nncnd 8644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  x  e.  CC )
37 1cnd 7706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
1  e.  CC )
3836, 37pncand 7997 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( x  + 
1 )  -  1 )  =  x )
3938oveq2d 5744 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  =  ( 1 ... x ) )
409, 7syl6eleq 2207 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  x  e.  ( ZZ>= ` 
1 ) )
41 fzisfzounsn 9906 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( ZZ>= `  1
)  ->  ( 1 ... x )  =  ( ( 1..^ x )  u.  { x } ) )
4240, 41syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1 ... x
)  =  ( ( 1..^ x )  u. 
{ x } ) )
4339, 42eqtrd 2147 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  =  ( ( 1..^ x )  u. 
{ x } ) )
4443sumeq1d 11027 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
45 nfv 1491 . . . . . . . . . . . . . . . 16  |-  F/ i ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )
46 nfcv 2255 . . . . . . . . . . . . . . . 16  |-  F/_ i
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)
47 1zzd 8985 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
1  e.  ZZ )
489nnzd 9076 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  x  e.  ZZ )
49 fzofig 10098 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  ZZ  /\  x  e.  ZZ )  ->  ( 1..^ x )  e.  Fin )
5047, 48, 49syl2anc 406 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1..^ x )  e.  Fin )
51 fzonel 9830 . . . . . . . . . . . . . . . . 17  |-  -.  x  e.  ( 1..^ x )
5251a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  -.  x  e.  (
1..^ x ) )
5317a1i 9 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  2  e.  RR+ )
54 elfzoelz 9817 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  e.  ( 1..^ x )  ->  i  e.  ZZ )
5554adantl 273 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  i  e.  ZZ )
5653, 55rpexpcld 10341 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( 2 ^ i )  e.  RR+ )
5756rpreccld 9393 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
5857rpred 9382 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
59 elfzouz 9821 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 1..^ x )  ->  i  e.  ( ZZ>= `  1 )
)
6059, 7syl6eleqr 2208 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 1..^ x )  ->  i  e.  NN )
6160, 29sylan2 282 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( F `  i )  e.  RR )
6258, 61remulcld 7720 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  RR )
6362recnd 7718 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  CC )
64 oveq2 5736 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  x  ->  (
2 ^ i )  =  ( 2 ^ x ) )
6564oveq2d 5744 . . . . . . . . . . . . . . . . 17  |-  ( i  =  x  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ x
) ) )
66 fveq2 5375 . . . . . . . . . . . . . . . . 17  |-  ( i  =  x  ->  ( F `  i )  =  ( F `  x ) )
6765, 66oveq12d 5746 . . . . . . . . . . . . . . . 16  |-  ( i  =  x  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( ( 1  /  ( 2 ^ x ) )  x.  ( F `  x
) ) )
6817a1i 9 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
2  e.  RR+ )
6968, 48rpexpcld 10341 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 2 ^ x
)  e.  RR+ )
7069rpreccld 9393 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1  /  (
2 ^ x ) )  e.  RR+ )
7170rpred 9382 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1  /  (
2 ^ x ) )  e.  RR )
723ad2antrr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  F : NN --> { 0 ,  1 } )
7372, 9ffvelrnd 5510 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( F `  x
)  e.  { 0 ,  1 } )
7426, 73sseldi 3061 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( F `  x
)  e.  RR )
7571, 74remulcld 7720 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)  e.  RR )
7675recnd 7718 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)  e.  CC )
7745, 46, 50, 9, 52, 63, 67, 76fsumsplitsn 11071 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ( 1..^ x )  u. 
{ x } ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  +  ( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
) ) )
78 simpr 109 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( F `  x
)  =  0 )
7978oveq2d 5744 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)  =  ( ( 1  /  ( 2 ^ x ) )  x.  0 ) )
8070rpcnd 9384 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1  /  (
2 ^ x ) )  e.  CC )
8180mul01d 8074 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  0 )  =  0 )
8279, 81eqtrd 2147 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)  =  0 )
8382oveq2d 5744 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  ( ( 1  /  ( 2 ^ x ) )  x.  ( F `  x
) ) )  =  ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  0 ) )
8444, 77, 833eqtrd 2151 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( sum_ i  e.  ( 1..^ x ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  +  0 ) )
8584oveq1d 5743 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1 ... ( ( x  +  1 )  -  1 ) ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  +  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
) )  =  ( ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  0 )  + 
sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) ) ) )
8635, 85eqtrd 2147 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  +  0 )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) ) ) )
8750, 62fsumrecl 11062 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  e.  RR )
88 0red 7691 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
0  e.  RR )
8987, 88readdcld 7719 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  0 )  e.  RR )
9010nnzd 9076 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( x  +  1 )  e.  ZZ )
91 eluznn 9296 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  +  1 )  e.  NN  /\  i  e.  ( ZZ>= `  ( x  +  1
) ) )  -> 
i  e.  NN )
9210, 91sylan 279 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  i  e.  NN )
9392, 30syldan 278 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  RR )
9411, 15, 92, 93fvmptd3 5468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) `
 i )  =  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
) )
9531, 32eqeltrd 2191 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) `
 i )  e.  CC )
967, 10, 95iserex 11000 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
(  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  <->  seq (
x  +  1 ) (  +  ,  ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) )  e.  dom  ~~>  ) )
9734, 96mpbid 146 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  seq ( x  +  1 ) (  +  , 
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) ) )  e. 
dom 
~~>  )
988, 90, 94, 93, 97isumrecl 11090 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  e.  RR )
9950, 58fsumrecl 11062 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  e.  RR )
10099, 71readdcld 7719 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  / 
( 2 ^ x
) ) )  e.  RR )
101 eqid 2115 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) )
10292, 21syldan 278 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
103101, 13, 92, 102fvmptd3 5468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `
 i )  =  ( 1  /  (
2 ^ i ) ) )
10492, 22syldan 278 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
105 seqex 10113 . . . . . . . . . . . . . . . . 17  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  _V
106 ax-1cn 7638 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
107101geo2lim 11177 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  CC  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) )  ~~>  1 )
108106, 107ax-mp 7 . . . . . . . . . . . . . . . . 17  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  ~~>  1
109 breldmg 4705 . . . . . . . . . . . . . . . . 17  |-  ( (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  _V  /\  1  e.  CC  /\  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  ~~>  1 )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
110105, 106, 108, 109mp3an 1298 . . . . . . . . . . . . . . . 16  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>
111110a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) )  e. 
dom 
~~>  )
112101, 13, 16, 21fvmptd3 5468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `
 i )  =  ( 1  /  (
2 ^ i ) ) )
11321rpcnd 9384 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  CC )
114112, 113eqeltrd 2191 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `
 i )  e.  CC )
1157, 10, 114iserex 11000 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
(  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  <->  seq (
x  +  1 ) (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  ) )
116111, 115mpbid 146 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  seq ( x  +  1 ) (  +  , 
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) )  e. 
dom 
~~>  )
1178, 90, 103, 104, 116isumrecl 11090 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) )  e.  RR )
118 simpr 109 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  ( F `  i )  =  0 )
119118oveq2d 5744 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  0 ) )
12057adantr 272 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
1  /  ( 2 ^ i ) )  e.  RR+ )
121120rpcnd 9384 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
1  /  ( 2 ^ i ) )  e.  CC )
122121mul01d 8074 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
( 1  /  (
2 ^ i ) )  x.  0 )  =  0 )
123119, 122eqtrd 2147 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  0 )
124120rpge0d 9386 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  0  <_  ( 1  /  (
2 ^ i ) ) )
125123, 124eqbrtrd 3915 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
126 simpr 109 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  ( F `  i )  =  1 )
127126oveq2d 5744 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  1 ) )
12858adantr 272 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
1  /  ( 2 ^ i ) )  e.  RR )
129128recnd 7718 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
1  /  ( 2 ^ i ) )  e.  CC )
130129mulid1d 7707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
( 1  /  (
2 ^ i ) )  x.  1 )  =  ( 1  / 
( 2 ^ i
) ) )
131127, 130eqtrd 2147 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( 1  / 
( 2 ^ i
) ) )
132128leidd 8195 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
1  /  ( 2 ^ i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
133131, 132eqbrtrd 3915 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
13472adantr 272 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  F : NN --> { 0 ,  1 } )
13560adantl 273 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  i  e.  NN )
136134, 135ffvelrnd 5510 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( F `  i )  e.  {
0 ,  1 } )
137 elpri 3516 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  i )  e.  { 0 ,  1 }  ->  (
( F `  i
)  =  0  \/  ( F `  i
)  =  1 ) )
138136, 137syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( ( F `
 i )  =  0  \/  ( F `
 i )  =  1 ) )
139125, 133, 138mpjaodan 770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  <_  (
1  /  ( 2 ^ i ) ) )
14050, 62, 58, 139fsumle 11124 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  <_  sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) ) )
14170rpgt0d 9385 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
0  <  ( 1  /  ( 2 ^ x ) ) )
14287, 88, 99, 71, 140, 141leltaddd 8246 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  0 )  < 
( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  / 
( 2 ^ x
) ) ) )
14372, 4, 8, 10trilpolemisumle 12923 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  <_  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) )
14489, 98, 100, 117, 142, 143ltleaddd 8245 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( sum_ i  e.  ( 1..^ x ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  +  0 )  +  sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) ) )  <  ( (
sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  / 
( 2 ^ x
) ) )  + 
sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( 1  /  ( 2 ^ i ) ) ) )
14586, 144eqbrtrd 3915 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <  ( ( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  /  (
2 ^ x ) ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
1464, 145eqbrtrid 3928 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  ( ( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  /  (
2 ^ x ) ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
147 nfcv 2255 . . . . . . . . . . . 12  |-  F/_ i
( 1  /  (
2 ^ x ) )
14857rpcnd 9384 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  CC )
14945, 147, 50, 9, 52, 148, 65, 80fsumsplitsn 11071 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ( 1..^ x )  u. 
{ x } ) ( 1  /  (
2 ^ i ) )  =  ( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  /  (
2 ^ x ) ) ) )
150149oveq1d 5743 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) )  =  ( ( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  /  (
2 ^ x ) ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
151146, 150breqtrrd 3921 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  ( sum_ i  e.  ( ( 1..^ x )  u.  { x } ) ( 1  /  ( 2 ^ i ) )  + 
sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( 1  /  ( 2 ^ i ) ) ) )
15242sumeq1d 11027 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1 ... x ) ( 1  /  ( 2 ^ i ) )  =  sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( 1  / 
( 2 ^ i
) ) )
153152oveq1d 5743 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1 ... x ) ( 1  /  (
2 ^ i ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( 1  /  (
2 ^ i ) ) )  =  (
sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
154151, 153breqtrrd 3921 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  ( sum_ i  e.  ( 1 ... x
) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
1557, 8, 10, 112, 113, 111isumsplit 11152 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
1  /  ( 2 ^ i ) )  =  ( sum_ i  e.  ( 1 ... (
( x  +  1 )  -  1 ) ) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
15639sumeq1d 11027 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( 1  /  ( 2 ^ i ) )  =  sum_ i  e.  ( 1 ... x ) ( 1  /  (
2 ^ i ) ) )
157156oveq1d 5743 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1 ... ( ( x  +  1 )  -  1 ) ) ( 1  /  (
2 ^ i ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( 1  /  (
2 ^ i ) ) )  =  (
sum_ i  e.  ( 1 ... x ) ( 1  /  (
2 ^ i ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( 1  /  (
2 ^ i ) ) ) )
158155, 157eqtrd 2147 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
1  /  ( 2 ^ i ) )  =  ( sum_ i  e.  ( 1 ... x
) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
159154, 158breqtrrd 3921 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  sum_ i  e.  NN  ( 1  /  (
2 ^ i ) ) )
160 geoihalfsum 11183 . . . . . . 7  |-  sum_ i  e.  NN  ( 1  / 
( 2 ^ i
) )  =  1
161159, 160syl6breq 3934 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  1 )
1626, 161ltned 7800 . . . . 5  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  =/=  1 )
163162neneqd 2303 . . . 4  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  -.  A  =  1
)
1642, 163pm2.65da 633 . . 3  |-  ( (
ph  /\  x  e.  NN )  ->  -.  ( F `  x )  =  0 )
1653ffvelrnda 5509 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e. 
{ 0 ,  1 } )
166 elpri 3516 . . . . 5  |-  ( ( F `  x )  e.  { 0 ,  1 }  ->  (
( F `  x
)  =  0  \/  ( F `  x
)  =  1 ) )
167165, 166syl 14 . . . 4  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( F `  x )  =  0  \/  ( F `  x )  =  1 ) )
168167orcomd 701 . . 3  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( F `  x )  =  1  \/  ( F `  x )  =  0 ) )
169164, 168ecased 1310 . 2  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  =  1 )
170169ralrimiva 2479 1  |-  ( ph  ->  A. x  e.  NN  ( F `  x )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 680    = wceq 1314    e. wcel 1463   A.wral 2390   _Vcvv 2657    u. cun 3035    C_ wss 3037   {csn 3493   {cpr 3494   class class class wbr 3895    |-> cmpt 3949   dom cdm 4499   -->wf 5077   ` cfv 5081  (class class class)co 5728   Fincfn 6588   CCcc 7545   RRcr 7546   0cc0 7547   1c1 7548    + caddc 7550    x. cmul 7552    < clt 7724    <_ cle 7725    - cmin 7856    / cdiv 8345   NNcn 8630   2c2 8681   ZZcz 8958   ZZ>=cuz 9228   RR+crp 9343   ...cfz 9683  ..^cfzo 9812    seqcseq 10111   ^cexp 10185    ~~> cli 10939   sum_csu 11014
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664  ax-caucvg 7665
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-isom 5090  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-frec 6242  df-1o 6267  df-oadd 6271  df-er 6383  df-en 6589  df-dom 6590  df-fin 6591  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-ico 9570  df-fz 9684  df-fzo 9813  df-seqfrec 10112  df-exp 10186  df-ihash 10415  df-cj 10507  df-re 10508  df-im 10509  df-rsqrt 10662  df-abs 10663  df-clim 10940  df-sumdc 11015
This theorem is referenced by:  trilpolemres  12927
  Copyright terms: Public domain W3C validator