Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemeq1 Unicode version

Theorem trilpolemeq1 16181
Description: Lemma for trilpo 16184. The  A  =  1 case. This is proved by noting that if any  ( F `  x
) is zero, then the infinite sum  A is less than one based on the term which is zero. We are using the fact that the  F sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemgt1.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
trilpolemeq1.a  |-  ( ph  ->  A  =  1 )
Assertion
Ref Expression
trilpolemeq1  |-  ( ph  ->  A. x  e.  NN  ( F `  x )  =  1 )
Distinct variable groups:    i, F    ph, i, x
Allowed substitution hints:    A( x, i)    F( x)

Proof of Theorem trilpolemeq1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 trilpolemeq1.a . . . . 5  |-  ( ph  ->  A  =  1 )
21ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  =  1 )
3 trilpolemgt1.f . . . . . . . 8  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
4 trilpolemgt1.a . . . . . . . 8  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
53, 4trilpolemcl 16178 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
65ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  e.  RR )
7 nnuz 9719 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
8 eqid 2207 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  ( x  +  1
) )  =  (
ZZ>= `  ( x  + 
1 ) )
9 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  x  e.  NN )
109peano2nnd 9086 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( x  +  1 )  e.  NN )
11 eqid 2207 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) )
12 oveq2 5975 . . . . . . . . . . . . . . . . 17  |-  ( n  =  i  ->  (
2 ^ n )  =  ( 2 ^ i ) )
1312oveq2d 5983 . . . . . . . . . . . . . . . 16  |-  ( n  =  i  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ i
) ) )
14 fveq2 5599 . . . . . . . . . . . . . . . 16  |-  ( n  =  i  ->  ( F `  n )  =  ( F `  i ) )
1513, 14oveq12d 5985 . . . . . . . . . . . . . . 15  |-  ( n  =  i  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
16 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  i  e.  NN )
17 2rp 9815 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  RR+
1817a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  2  e.  RR+ )
1916nnzd 9529 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  i  e.  ZZ )
2018, 19rpexpcld 10879 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( 2 ^ i )  e.  RR+ )
2120rpreccld 9864 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
2221rpred 9853 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
23 0re 8107 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
24 1re 8106 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
25 prssi 3802 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
2623, 24, 25mp2an 426 . . . . . . . . . . . . . . . . 17  |-  { 0 ,  1 }  C_  RR
273ad3antrrr 492 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  F : NN --> { 0 ,  1 } )
2827, 16ffvelcdmd 5739 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( F `  i )  e.  {
0 ,  1 } )
2926, 28sselid 3199 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( F `  i )  e.  RR )
3022, 29remulcld 8138 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  RR )
3111, 15, 16, 30fvmptd3 5696 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) `
 i )  =  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
) )
3230recnd 8136 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  CC )
333, 11trilpolemclim 16177 . . . . . . . . . . . . . . 15  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
3433ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) ) )  e. 
dom 
~~>  )
357, 8, 10, 31, 32, 34isumsplit 11917 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( sum_ i  e.  ( 1 ... (
( x  +  1 )  -  1 ) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) ) ) )
369nncnd 9085 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  x  e.  CC )
37 1cnd 8123 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
1  e.  CC )
3836, 37pncand 8419 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( x  + 
1 )  -  1 )  =  x )
3938oveq2d 5983 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  =  ( 1 ... x ) )
409, 7eleqtrdi 2300 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  x  e.  ( ZZ>= ` 
1 ) )
41 fzisfzounsn 10402 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( ZZ>= `  1
)  ->  ( 1 ... x )  =  ( ( 1..^ x )  u.  { x } ) )
4240, 41syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1 ... x
)  =  ( ( 1..^ x )  u. 
{ x } ) )
4339, 42eqtrd 2240 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  =  ( ( 1..^ x )  u. 
{ x } ) )
4443sumeq1d 11792 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
45 nfv 1552 . . . . . . . . . . . . . . . 16  |-  F/ i ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )
46 nfcv 2350 . . . . . . . . . . . . . . . 16  |-  F/_ i
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)
47 1zzd 9434 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
1  e.  ZZ )
489nnzd 9529 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  x  e.  ZZ )
49 fzofig 10614 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  ZZ  /\  x  e.  ZZ )  ->  ( 1..^ x )  e.  Fin )
5047, 48, 49syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1..^ x )  e.  Fin )
51 fzonel 10318 . . . . . . . . . . . . . . . . 17  |-  -.  x  e.  ( 1..^ x )
5251a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  -.  x  e.  (
1..^ x ) )
5317a1i 9 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  2  e.  RR+ )
54 elfzoelz 10304 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  e.  ( 1..^ x )  ->  i  e.  ZZ )
5554adantl 277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  i  e.  ZZ )
5653, 55rpexpcld 10879 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( 2 ^ i )  e.  RR+ )
5756rpreccld 9864 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
5857rpred 9853 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
59 elfzouz 10308 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 1..^ x )  ->  i  e.  ( ZZ>= `  1 )
)
6059, 7eleqtrrdi 2301 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 1..^ x )  ->  i  e.  NN )
6160, 29sylan2 286 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( F `  i )  e.  RR )
6258, 61remulcld 8138 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  RR )
6362recnd 8136 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  CC )
64 oveq2 5975 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  x  ->  (
2 ^ i )  =  ( 2 ^ x ) )
6564oveq2d 5983 . . . . . . . . . . . . . . . . 17  |-  ( i  =  x  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ x
) ) )
66 fveq2 5599 . . . . . . . . . . . . . . . . 17  |-  ( i  =  x  ->  ( F `  i )  =  ( F `  x ) )
6765, 66oveq12d 5985 . . . . . . . . . . . . . . . 16  |-  ( i  =  x  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( ( 1  /  ( 2 ^ x ) )  x.  ( F `  x
) ) )
6817a1i 9 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
2  e.  RR+ )
6968, 48rpexpcld 10879 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 2 ^ x
)  e.  RR+ )
7069rpreccld 9864 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1  /  (
2 ^ x ) )  e.  RR+ )
7170rpred 9853 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1  /  (
2 ^ x ) )  e.  RR )
723ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  F : NN --> { 0 ,  1 } )
7372, 9ffvelcdmd 5739 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( F `  x
)  e.  { 0 ,  1 } )
7426, 73sselid 3199 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( F `  x
)  e.  RR )
7571, 74remulcld 8138 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)  e.  RR )
7675recnd 8136 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)  e.  CC )
7745, 46, 50, 9, 52, 63, 67, 76fsumsplitsn 11836 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ( 1..^ x )  u. 
{ x } ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  +  ( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
) ) )
78 simpr 110 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( F `  x
)  =  0 )
7978oveq2d 5983 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)  =  ( ( 1  /  ( 2 ^ x ) )  x.  0 ) )
8070rpcnd 9855 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( 1  /  (
2 ^ x ) )  e.  CC )
8180mul01d 8500 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  0 )  =  0 )
8279, 81eqtrd 2240 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( F `  x )
)  =  0 )
8382oveq2d 5983 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  ( ( 1  /  ( 2 ^ x ) )  x.  ( F `  x
) ) )  =  ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  0 ) )
8444, 77, 833eqtrd 2244 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( sum_ i  e.  ( 1..^ x ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  +  0 ) )
8584oveq1d 5982 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1 ... ( ( x  +  1 )  -  1 ) ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  +  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
) )  =  ( ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  0 )  + 
sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) ) ) )
8635, 85eqtrd 2240 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  +  0 )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) ) ) )
8750, 62fsumrecl 11827 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  e.  RR )
88 0red 8108 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
0  e.  RR )
8987, 88readdcld 8137 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  0 )  e.  RR )
9010nnzd 9529 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( x  +  1 )  e.  ZZ )
91 eluznn 9756 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  +  1 )  e.  NN  /\  i  e.  ( ZZ>= `  ( x  +  1
) ) )  -> 
i  e.  NN )
9210, 91sylan 283 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  i  e.  NN )
9392, 30syldan 282 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  e.  RR )
9411, 15, 92, 93fvmptd3 5696 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) `
 i )  =  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
) )
9531, 32eqeltrd 2284 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) `
 i )  e.  CC )
967, 10, 95iserex 11765 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
(  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  <->  seq (
x  +  1 ) (  +  ,  ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) )  e.  dom  ~~>  ) )
9734, 96mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  seq ( x  +  1 ) (  +  , 
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) ) )  e. 
dom 
~~>  )
988, 90, 94, 93, 97isumrecl 11855 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  e.  RR )
9950, 58fsumrecl 11827 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  e.  RR )
10099, 71readdcld 8137 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  / 
( 2 ^ x
) ) )  e.  RR )
101 eqid 2207 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) )
10292, 21syldan 282 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
103101, 13, 92, 102fvmptd3 5696 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `
 i )  =  ( 1  /  (
2 ^ i ) ) )
10492, 22syldan 282 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
105 seqex 10631 . . . . . . . . . . . . . . . . 17  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  _V
106 ax-1cn 8053 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
107101geo2lim 11942 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  CC  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) )  ~~>  1 )
108106, 107ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  ~~>  1
109 breldmg 4903 . . . . . . . . . . . . . . . . 17  |-  ( (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  _V  /\  1  e.  CC  /\  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  ~~>  1 )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
110105, 106, 108, 109mp3an 1350 . . . . . . . . . . . . . . . 16  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>
111110a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) )  e. 
dom 
~~>  )
112101, 13, 16, 21fvmptd3 5696 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `
 i )  =  ( 1  /  (
2 ^ i ) ) )
11321rpcnd 9855 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  CC )
114112, 113eqeltrd 2284 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `
 i )  e.  CC )
1157, 10, 114iserex 11765 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
(  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  <->  seq (
x  +  1 ) (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  ) )
116111, 115mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  seq ( x  +  1 ) (  +  , 
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) )  e. 
dom 
~~>  )
1178, 90, 103, 104, 116isumrecl 11855 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) )  e.  RR )
118 simpr 110 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  ( F `  i )  =  0 )
119118oveq2d 5983 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  0 ) )
12057adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
1  /  ( 2 ^ i ) )  e.  RR+ )
121120rpcnd 9855 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
1  /  ( 2 ^ i ) )  e.  CC )
122121mul01d 8500 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
( 1  /  (
2 ^ i ) )  x.  0 )  =  0 )
123119, 122eqtrd 2240 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  0 )
124120rpge0d 9857 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  0  <_  ( 1  /  (
2 ^ i ) ) )
125123, 124eqbrtrd 4081 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  0 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
126 simpr 110 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  ( F `  i )  =  1 )
127126oveq2d 5983 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  1 ) )
12858adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
1  /  ( 2 ^ i ) )  e.  RR )
129128recnd 8136 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
1  /  ( 2 ^ i ) )  e.  CC )
130129mulridd 8124 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
( 1  /  (
2 ^ i ) )  x.  1 )  =  ( 1  / 
( 2 ^ i
) ) )
131127, 130eqtrd 2240 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  =  ( 1  / 
( 2 ^ i
) ) )
132128leidd 8622 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
1  /  ( 2 ^ i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
133131, 132eqbrtrd 4081 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  /\  i  e.  ( 1..^ x ) )  /\  ( F `
 i )  =  1 )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
13472adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  F : NN --> { 0 ,  1 } )
13560adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  i  e.  NN )
136134, 135ffvelcdmd 5739 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( F `  i )  e.  {
0 ,  1 } )
137 elpri 3666 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  i )  e.  { 0 ,  1 }  ->  (
( F `  i
)  =  0  \/  ( F `  i
)  =  1 ) )
138136, 137syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( ( F `
 i )  =  0  \/  ( F `
 i )  =  1 ) )
139125, 133, 138mpjaodan 800 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) )  <_  (
1  /  ( 2 ^ i ) ) )
14050, 62, 58, 139fsumle 11889 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  <_  sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) ) )
14170rpgt0d 9856 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
0  <  ( 1  /  ( 2 ^ x ) ) )
14287, 88, 99, 71, 140, 141leltaddd 8674 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1..^ x ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  +  0 )  < 
( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  / 
( 2 ^ x
) ) ) )
14372, 4, 8, 10trilpolemisumle 16179 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  <_  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) )
14489, 98, 100, 117, 142, 143ltleaddd 8673 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( ( sum_ i  e.  ( 1..^ x ) ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  +  0 )  +  sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) ) )  <  ( (
sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  / 
( 2 ^ x
) ) )  + 
sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( 1  /  ( 2 ^ i ) ) ) )
14586, 144eqbrtrd 4081 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <  ( ( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  /  (
2 ^ x ) ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
1464, 145eqbrtrid 4094 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  ( ( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  /  (
2 ^ x ) ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
147 nfcv 2350 . . . . . . . . . . . 12  |-  F/_ i
( 1  /  (
2 ^ x ) )
14857rpcnd 9855 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x
)  =  0 )  /\  i  e.  ( 1..^ x ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  CC )
14945, 147, 50, 9, 52, 148, 65, 80fsumsplitsn 11836 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( ( 1..^ x )  u. 
{ x } ) ( 1  /  (
2 ^ i ) )  =  ( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  /  (
2 ^ x ) ) ) )
150149oveq1d 5982 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) )  =  ( ( sum_ i  e.  ( 1..^ x ) ( 1  /  ( 2 ^ i ) )  +  ( 1  /  (
2 ^ x ) ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
151146, 150breqtrrd 4087 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  ( sum_ i  e.  ( ( 1..^ x )  u.  { x } ) ( 1  /  ( 2 ^ i ) )  + 
sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( 1  /  ( 2 ^ i ) ) ) )
15242sumeq1d 11792 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1 ... x ) ( 1  /  ( 2 ^ i ) )  =  sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( 1  / 
( 2 ^ i
) ) )
153152oveq1d 5982 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1 ... x ) ( 1  /  (
2 ^ i ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( 1  /  (
2 ^ i ) ) )  =  (
sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
154151, 153breqtrrd 4087 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  ( sum_ i  e.  ( 1 ... x
) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
1557, 8, 10, 112, 113, 111isumsplit 11917 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
1  /  ( 2 ^ i ) )  =  ( sum_ i  e.  ( 1 ... (
( x  +  1 )  -  1 ) ) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
15639sumeq1d 11792 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( 1  /  ( 2 ^ i ) )  =  sum_ i  e.  ( 1 ... x ) ( 1  /  (
2 ^ i ) ) )
157156oveq1d 5982 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  -> 
( sum_ i  e.  ( 1 ... ( ( x  +  1 )  -  1 ) ) ( 1  /  (
2 ^ i ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( 1  /  (
2 ^ i ) ) )  =  (
sum_ i  e.  ( 1 ... x ) ( 1  /  (
2 ^ i ) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( 1  /  (
2 ^ i ) ) ) )
158155, 157eqtrd 2240 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  sum_ i  e.  NN  (
1  /  ( 2 ^ i ) )  =  ( sum_ i  e.  ( 1 ... x
) ( 1  / 
( 2 ^ i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( 1  /  ( 2 ^ i ) ) ) )
159154, 158breqtrrd 4087 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  sum_ i  e.  NN  ( 1  /  (
2 ^ i ) ) )
160 geoihalfsum 11948 . . . . . . 7  |-  sum_ i  e.  NN  ( 1  / 
( 2 ^ i
) )  =  1
161159, 160breqtrdi 4100 . . . . . 6  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  <  1 )
1626, 161ltned 8221 . . . . 5  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  A  =/=  1 )
163162neneqd 2399 . . . 4  |-  ( ( ( ph  /\  x  e.  NN )  /\  ( F `  x )  =  0 )  ->  -.  A  =  1
)
1642, 163pm2.65da 663 . . 3  |-  ( (
ph  /\  x  e.  NN )  ->  -.  ( F `  x )  =  0 )
1653ffvelcdmda 5738 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e. 
{ 0 ,  1 } )
166 elpri 3666 . . . . 5  |-  ( ( F `  x )  e.  { 0 ,  1 }  ->  (
( F `  x
)  =  0  \/  ( F `  x
)  =  1 ) )
167165, 166syl 14 . . . 4  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( F `  x )  =  0  \/  ( F `  x )  =  1 ) )
168167orcomd 731 . . 3  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( F `  x )  =  1  \/  ( F `  x )  =  0 ) )
169164, 168ecased 1362 . 2  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  =  1 )
170169ralrimiva 2581 1  |-  ( ph  ->  A. x  e.  NN  ( F `  x )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776    u. cun 3172    C_ wss 3174   {csn 3643   {cpr 3644   class class class wbr 4059    |-> cmpt 4121   dom cdm 4693   -->wf 5286   ` cfv 5290  (class class class)co 5967   Fincfn 6850   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278    / cdiv 8780   NNcn 9071   2c2 9122   ZZcz 9407   ZZ>=cuz 9683   RR+crp 9810   ...cfz 10165  ..^cfzo 10299    seqcseq 10629   ^cexp 10720    ~~> cli 11704   sum_csu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by:  trilpolemres  16183  redcwlpolemeq1  16195
  Copyright terms: Public domain W3C validator