ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef1 Unicode version

Theorem casef1 7149
Description: The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef1.f  |-  ( ph  ->  F : A -1-1-> X
)
casef1.g  |-  ( ph  ->  G : B -1-1-> X
)
casef1.disj  |-  ( ph  ->  ( ran  F  i^i  ran 
G )  =  (/) )
Assertion
Ref Expression
casef1  |-  ( ph  -> case ( F ,  G
) : ( A B ) -1-1-> X )

Proof of Theorem casef1
StepHypRef Expression
1 casef1.f . . . 4  |-  ( ph  ->  F : A -1-1-> X
)
2 f1f 5459 . . . 4  |-  ( F : A -1-1-> X  ->  F : A --> X )
31, 2syl 14 . . 3  |-  ( ph  ->  F : A --> X )
4 casef1.g . . . 4  |-  ( ph  ->  G : B -1-1-> X
)
5 f1f 5459 . . . 4  |-  ( G : B -1-1-> X  ->  G : B --> X )
64, 5syl 14 . . 3  |-  ( ph  ->  G : B --> X )
73, 6casef 7147 . 2  |-  ( ph  -> case ( F ,  G
) : ( A B ) --> X )
8 df-f1 5259 . . . . 5  |-  ( F : A -1-1-> X  <->  ( F : A --> X  /\  Fun  `' F ) )
98simprbi 275 . . . 4  |-  ( F : A -1-1-> X  ->  Fun  `' F )
101, 9syl 14 . . 3  |-  ( ph  ->  Fun  `' F )
11 df-f1 5259 . . . . 5  |-  ( G : B -1-1-> X  <->  ( G : B --> X  /\  Fun  `' G ) )
1211simprbi 275 . . . 4  |-  ( G : B -1-1-> X  ->  Fun  `' G )
134, 12syl 14 . . 3  |-  ( ph  ->  Fun  `' G )
14 casef1.disj . . 3  |-  ( ph  ->  ( ran  F  i^i  ran 
G )  =  (/) )
1510, 13, 14caseinj 7148 . 2  |-  ( ph  ->  Fun  `'case ( F ,  G
) )
16 df-f1 5259 . 2  |-  (case ( F ,  G ) : ( A B )
-1-1-> X  <->  (case ( F ,  G ) : ( A B ) --> X  /\  Fun  `'case ( F ,  G
) ) )
177, 15, 16sylanbrc 417 1  |-  ( ph  -> case ( F ,  G
) : ( A B ) -1-1-> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    i^i cin 3152   (/)c0 3446   `'ccnv 4658   ran crn 4660   Fun wfun 5248   -->wf 5250   -1-1->wf1 5251   ⊔ cdju 7096  casecdjucase 7142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-dju 7097  df-inl 7106  df-inr 7107  df-case 7143
This theorem is referenced by:  djudom  7152  exmidsbthrlem  15512
  Copyright terms: Public domain W3C validator