ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef1 Unicode version

Theorem casef1 7055
Description: The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef1.f  |-  ( ph  ->  F : A -1-1-> X
)
casef1.g  |-  ( ph  ->  G : B -1-1-> X
)
casef1.disj  |-  ( ph  ->  ( ran  F  i^i  ran 
G )  =  (/) )
Assertion
Ref Expression
casef1  |-  ( ph  -> case ( F ,  G
) : ( A B ) -1-1-> X )

Proof of Theorem casef1
StepHypRef Expression
1 casef1.f . . . 4  |-  ( ph  ->  F : A -1-1-> X
)
2 f1f 5393 . . . 4  |-  ( F : A -1-1-> X  ->  F : A --> X )
31, 2syl 14 . . 3  |-  ( ph  ->  F : A --> X )
4 casef1.g . . . 4  |-  ( ph  ->  G : B -1-1-> X
)
5 f1f 5393 . . . 4  |-  ( G : B -1-1-> X  ->  G : B --> X )
64, 5syl 14 . . 3  |-  ( ph  ->  G : B --> X )
73, 6casef 7053 . 2  |-  ( ph  -> case ( F ,  G
) : ( A B ) --> X )
8 df-f1 5193 . . . . 5  |-  ( F : A -1-1-> X  <->  ( F : A --> X  /\  Fun  `' F ) )
98simprbi 273 . . . 4  |-  ( F : A -1-1-> X  ->  Fun  `' F )
101, 9syl 14 . . 3  |-  ( ph  ->  Fun  `' F )
11 df-f1 5193 . . . . 5  |-  ( G : B -1-1-> X  <->  ( G : B --> X  /\  Fun  `' G ) )
1211simprbi 273 . . . 4  |-  ( G : B -1-1-> X  ->  Fun  `' G )
134, 12syl 14 . . 3  |-  ( ph  ->  Fun  `' G )
14 casef1.disj . . 3  |-  ( ph  ->  ( ran  F  i^i  ran 
G )  =  (/) )
1510, 13, 14caseinj 7054 . 2  |-  ( ph  ->  Fun  `'case ( F ,  G
) )
16 df-f1 5193 . 2  |-  (case ( F ,  G ) : ( A B )
-1-1-> X  <->  (case ( F ,  G ) : ( A B ) --> X  /\  Fun  `'case ( F ,  G
) ) )
177, 15, 16sylanbrc 414 1  |-  ( ph  -> case ( F ,  G
) : ( A B ) -1-1-> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    i^i cin 3115   (/)c0 3409   `'ccnv 4603   ran crn 4605   Fun wfun 5182   -->wf 5184   -1-1->wf1 5185   ⊔ cdju 7002  casecdjucase 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013  df-case 7049
This theorem is referenced by:  djudom  7058  exmidsbthrlem  13901
  Copyright terms: Public domain W3C validator