ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef1 Unicode version

Theorem casef1 7192
Description: The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef1.f  |-  ( ph  ->  F : A -1-1-> X
)
casef1.g  |-  ( ph  ->  G : B -1-1-> X
)
casef1.disj  |-  ( ph  ->  ( ran  F  i^i  ran 
G )  =  (/) )
Assertion
Ref Expression
casef1  |-  ( ph  -> case ( F ,  G
) : ( A B ) -1-1-> X )

Proof of Theorem casef1
StepHypRef Expression
1 casef1.f . . . 4  |-  ( ph  ->  F : A -1-1-> X
)
2 f1f 5481 . . . 4  |-  ( F : A -1-1-> X  ->  F : A --> X )
31, 2syl 14 . . 3  |-  ( ph  ->  F : A --> X )
4 casef1.g . . . 4  |-  ( ph  ->  G : B -1-1-> X
)
5 f1f 5481 . . . 4  |-  ( G : B -1-1-> X  ->  G : B --> X )
64, 5syl 14 . . 3  |-  ( ph  ->  G : B --> X )
73, 6casef 7190 . 2  |-  ( ph  -> case ( F ,  G
) : ( A B ) --> X )
8 df-f1 5276 . . . . 5  |-  ( F : A -1-1-> X  <->  ( F : A --> X  /\  Fun  `' F ) )
98simprbi 275 . . . 4  |-  ( F : A -1-1-> X  ->  Fun  `' F )
101, 9syl 14 . . 3  |-  ( ph  ->  Fun  `' F )
11 df-f1 5276 . . . . 5  |-  ( G : B -1-1-> X  <->  ( G : B --> X  /\  Fun  `' G ) )
1211simprbi 275 . . . 4  |-  ( G : B -1-1-> X  ->  Fun  `' G )
134, 12syl 14 . . 3  |-  ( ph  ->  Fun  `' G )
14 casef1.disj . . 3  |-  ( ph  ->  ( ran  F  i^i  ran 
G )  =  (/) )
1510, 13, 14caseinj 7191 . 2  |-  ( ph  ->  Fun  `'case ( F ,  G
) )
16 df-f1 5276 . 2  |-  (case ( F ,  G ) : ( A B )
-1-1-> X  <->  (case ( F ,  G ) : ( A B ) --> X  /\  Fun  `'case ( F ,  G
) ) )
177, 15, 16sylanbrc 417 1  |-  ( ph  -> case ( F ,  G
) : ( A B ) -1-1-> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    i^i cin 3165   (/)c0 3460   `'ccnv 4674   ran crn 4676   Fun wfun 5265   -->wf 5267   -1-1->wf1 5268   ⊔ cdju 7139  casecdjucase 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-2nd 6227  df-1o 6502  df-dju 7140  df-inl 7149  df-inr 7150  df-case 7186
This theorem is referenced by:  djudom  7195  exmidsbthrlem  15965
  Copyright terms: Public domain W3C validator