ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef1 Unicode version

Theorem casef1 6835
Description: The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef1.f  |-  ( ph  ->  F : A -1-1-> X
)
casef1.g  |-  ( ph  ->  G : B -1-1-> X
)
casef1.disj  |-  ( ph  ->  ( ran  F  i^i  ran 
G )  =  (/) )
Assertion
Ref Expression
casef1  |-  ( ph  -> case ( F ,  G
) : ( A B ) -1-1-> X )

Proof of Theorem casef1
StepHypRef Expression
1 casef1.f . . . 4  |-  ( ph  ->  F : A -1-1-> X
)
2 f1f 5229 . . . 4  |-  ( F : A -1-1-> X  ->  F : A --> X )
31, 2syl 14 . . 3  |-  ( ph  ->  F : A --> X )
4 casef1.g . . . 4  |-  ( ph  ->  G : B -1-1-> X
)
5 f1f 5229 . . . 4  |-  ( G : B -1-1-> X  ->  G : B --> X )
64, 5syl 14 . . 3  |-  ( ph  ->  G : B --> X )
73, 6casef 6833 . 2  |-  ( ph  -> case ( F ,  G
) : ( A B ) --> X )
8 df-f1 5033 . . . . 5  |-  ( F : A -1-1-> X  <->  ( F : A --> X  /\  Fun  `' F ) )
98simprbi 270 . . . 4  |-  ( F : A -1-1-> X  ->  Fun  `' F )
101, 9syl 14 . . 3  |-  ( ph  ->  Fun  `' F )
11 df-f1 5033 . . . . 5  |-  ( G : B -1-1-> X  <->  ( G : B --> X  /\  Fun  `' G ) )
1211simprbi 270 . . . 4  |-  ( G : B -1-1-> X  ->  Fun  `' G )
134, 12syl 14 . . 3  |-  ( ph  ->  Fun  `' G )
14 casef1.disj . . 3  |-  ( ph  ->  ( ran  F  i^i  ran 
G )  =  (/) )
1510, 13, 14caseinj 6834 . 2  |-  ( ph  ->  Fun  `'case ( F ,  G
) )
16 df-f1 5033 . 2  |-  (case ( F ,  G ) : ( A B )
-1-1-> X  <->  (case ( F ,  G ) : ( A B ) --> X  /\  Fun  `'case ( F ,  G
) ) )
177, 15, 16sylanbrc 409 1  |-  ( ph  -> case ( F ,  G
) : ( A B ) -1-1-> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    i^i cin 2999   (/)c0 3287   `'ccnv 4450   ran crn 4452   Fun wfun 5022   -->wf 5024   -1-1->wf1 5025   ⊔ cdju 6784  casecdjucase 6828
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-suc 4207  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-1st 5925  df-2nd 5926  df-1o 6195  df-dju 6785  df-inl 6793  df-inr 6794  df-case 6829
This theorem is referenced by:  djudom  6836  exmidsbthrlem  12178
  Copyright terms: Public domain W3C validator