ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbopeq1a Unicode version

Theorem csbopeq1a 6287
Description: Equality theorem for substitution of a class  A for an ordered pair  <. x ,  y >. in  B (analog of csbeq1a 3106). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
csbopeq1a  |-  ( A  =  <. x ,  y
>.  ->  [_ ( 1st `  A
)  /  x ]_ [_ ( 2nd `  A
)  /  y ]_ B  =  B )

Proof of Theorem csbopeq1a
StepHypRef Expression
1 vex 2776 . . . . 5  |-  x  e. 
_V
2 vex 2776 . . . . 5  |-  y  e. 
_V
31, 2op2ndd 6248 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 2nd `  A
)  =  y )
43eqcomd 2212 . . 3  |-  ( A  =  <. x ,  y
>.  ->  y  =  ( 2nd `  A ) )
5 csbeq1a 3106 . . 3  |-  ( y  =  ( 2nd `  A
)  ->  B  =  [_ ( 2nd `  A
)  /  y ]_ B )
64, 5syl 14 . 2  |-  ( A  =  <. x ,  y
>.  ->  B  =  [_ ( 2nd `  A )  /  y ]_ B
)
71, 2op1std 6247 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  x )
87eqcomd 2212 . . 3  |-  ( A  =  <. x ,  y
>.  ->  x  =  ( 1st `  A ) )
9 csbeq1a 3106 . . 3  |-  ( x  =  ( 1st `  A
)  ->  [_ ( 2nd `  A )  /  y ]_ B  =  [_ ( 1st `  A )  /  x ]_ [_ ( 2nd `  A )  /  y ]_ B )
108, 9syl 14 . 2  |-  ( A  =  <. x ,  y
>.  ->  [_ ( 2nd `  A
)  /  y ]_ B  =  [_ ( 1st `  A )  /  x ]_ [_ ( 2nd `  A
)  /  y ]_ B )
116, 10eqtr2d 2240 1  |-  ( A  =  <. x ,  y
>.  ->  [_ ( 1st `  A
)  /  x ]_ [_ ( 2nd `  A
)  /  y ]_ B  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   [_csb 3097   <.cop 3641   ` cfv 5280   1stc1st 6237   2ndc2nd 6238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fv 5288  df-1st 6239  df-2nd 6240
This theorem is referenced by:  dfmpo  6322  f1od2  6334
  Copyright terms: Public domain W3C validator