ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbopeq1a Unicode version

Theorem csbopeq1a 6192
Description: Equality theorem for substitution of a class  A for an ordered pair  <. x ,  y >. in  B (analog of csbeq1a 3068). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
csbopeq1a  |-  ( A  =  <. x ,  y
>.  ->  [_ ( 1st `  A
)  /  x ]_ [_ ( 2nd `  A
)  /  y ]_ B  =  B )

Proof of Theorem csbopeq1a
StepHypRef Expression
1 vex 2742 . . . . 5  |-  x  e. 
_V
2 vex 2742 . . . . 5  |-  y  e. 
_V
31, 2op2ndd 6153 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 2nd `  A
)  =  y )
43eqcomd 2183 . . 3  |-  ( A  =  <. x ,  y
>.  ->  y  =  ( 2nd `  A ) )
5 csbeq1a 3068 . . 3  |-  ( y  =  ( 2nd `  A
)  ->  B  =  [_ ( 2nd `  A
)  /  y ]_ B )
64, 5syl 14 . 2  |-  ( A  =  <. x ,  y
>.  ->  B  =  [_ ( 2nd `  A )  /  y ]_ B
)
71, 2op1std 6152 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  x )
87eqcomd 2183 . . 3  |-  ( A  =  <. x ,  y
>.  ->  x  =  ( 1st `  A ) )
9 csbeq1a 3068 . . 3  |-  ( x  =  ( 1st `  A
)  ->  [_ ( 2nd `  A )  /  y ]_ B  =  [_ ( 1st `  A )  /  x ]_ [_ ( 2nd `  A )  /  y ]_ B )
108, 9syl 14 . 2  |-  ( A  =  <. x ,  y
>.  ->  [_ ( 2nd `  A
)  /  y ]_ B  =  [_ ( 1st `  A )  /  x ]_ [_ ( 2nd `  A
)  /  y ]_ B )
116, 10eqtr2d 2211 1  |-  ( A  =  <. x ,  y
>.  ->  [_ ( 1st `  A
)  /  x ]_ [_ ( 2nd `  A
)  /  y ]_ B  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   [_csb 3059   <.cop 3597   ` cfv 5218   1stc1st 6142   2ndc2nd 6143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fv 5226  df-1st 6144  df-2nd 6145
This theorem is referenced by:  dfmpo  6227  f1od2  6239
  Copyright terms: Public domain W3C validator