ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbopeq1a Unicode version

Theorem csbopeq1a 6167
Description: Equality theorem for substitution of a class  A for an ordered pair  <. x ,  y >. in  B (analog of csbeq1a 3058). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
csbopeq1a  |-  ( A  =  <. x ,  y
>.  ->  [_ ( 1st `  A
)  /  x ]_ [_ ( 2nd `  A
)  /  y ]_ B  =  B )

Proof of Theorem csbopeq1a
StepHypRef Expression
1 vex 2733 . . . . 5  |-  x  e. 
_V
2 vex 2733 . . . . 5  |-  y  e. 
_V
31, 2op2ndd 6128 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 2nd `  A
)  =  y )
43eqcomd 2176 . . 3  |-  ( A  =  <. x ,  y
>.  ->  y  =  ( 2nd `  A ) )
5 csbeq1a 3058 . . 3  |-  ( y  =  ( 2nd `  A
)  ->  B  =  [_ ( 2nd `  A
)  /  y ]_ B )
64, 5syl 14 . 2  |-  ( A  =  <. x ,  y
>.  ->  B  =  [_ ( 2nd `  A )  /  y ]_ B
)
71, 2op1std 6127 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  x )
87eqcomd 2176 . . 3  |-  ( A  =  <. x ,  y
>.  ->  x  =  ( 1st `  A ) )
9 csbeq1a 3058 . . 3  |-  ( x  =  ( 1st `  A
)  ->  [_ ( 2nd `  A )  /  y ]_ B  =  [_ ( 1st `  A )  /  x ]_ [_ ( 2nd `  A )  /  y ]_ B )
108, 9syl 14 . 2  |-  ( A  =  <. x ,  y
>.  ->  [_ ( 2nd `  A
)  /  y ]_ B  =  [_ ( 1st `  A )  /  x ]_ [_ ( 2nd `  A
)  /  y ]_ B )
116, 10eqtr2d 2204 1  |-  ( A  =  <. x ,  y
>.  ->  [_ ( 1st `  A
)  /  x ]_ [_ ( 2nd `  A
)  /  y ]_ B  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   [_csb 3049   <.cop 3586   ` cfv 5198   1stc1st 6117   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-1st 6119  df-2nd 6120
This theorem is referenced by:  dfmpo  6202  f1od2  6214
  Copyright terms: Public domain W3C validator