Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > op1std | Unicode version |
Description: Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
op1st.1 | |
op1st.2 |
Ref | Expression |
---|---|
op1std |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5486 | . 2 | |
2 | op1st.1 | . . 3 | |
3 | op1st.2 | . . 3 | |
4 | 2, 3 | op1st 6114 | . 2 |
5 | 1, 4 | eqtrdi 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 cvv 2726 cop 3579 cfv 5188 c1st 6106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-1st 6108 |
This theorem is referenced by: xp1st 6133 sbcopeq1a 6155 csbopeq1a 6156 eloprabi 6164 mpomptsx 6165 dmmpossx 6167 fmpox 6168 fmpoco 6184 df1st2 6187 xporderlem 6199 xpf1o 6810 fisumcom2 11379 fprodcom2fi 11567 txbas 12898 cnmpt1st 12928 txhmeo 12959 |
Copyright terms: Public domain | W3C validator |