ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1std Unicode version

Theorem op1std 6201
Description: Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
op1st.1  |-  A  e. 
_V
op1st.2  |-  B  e. 
_V
Assertion
Ref Expression
op1std  |-  ( C  =  <. A ,  B >.  ->  ( 1st `  C
)  =  A )

Proof of Theorem op1std
StepHypRef Expression
1 fveq2 5554 . 2  |-  ( C  =  <. A ,  B >.  ->  ( 1st `  C
)  =  ( 1st `  <. A ,  B >. ) )
2 op1st.1 . . 3  |-  A  e. 
_V
3 op1st.2 . . 3  |-  B  e. 
_V
42, 3op1st 6199 . 2  |-  ( 1st `  <. A ,  B >. )  =  A
51, 4eqtrdi 2242 1  |-  ( C  =  <. A ,  B >.  ->  ( 1st `  C
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   <.cop 3621   ` cfv 5254   1stc1st 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-1st 6193
This theorem is referenced by:  xp1st  6218  sbcopeq1a  6240  csbopeq1a  6241  eloprabi  6249  mpomptsx  6250  dmmpossx  6252  fmpox  6253  fmpoco  6269  df1st2  6272  xporderlem  6284  xpf1o  6900  fisumcom2  11581  fprodcom2fi  11769  txbas  14426  cnmpt1st  14456  txhmeo  14487  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator