ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1std Unicode version

Theorem op1std 6257
Description: Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
op1st.1  |-  A  e. 
_V
op1st.2  |-  B  e. 
_V
Assertion
Ref Expression
op1std  |-  ( C  =  <. A ,  B >.  ->  ( 1st `  C
)  =  A )

Proof of Theorem op1std
StepHypRef Expression
1 fveq2 5599 . 2  |-  ( C  =  <. A ,  B >.  ->  ( 1st `  C
)  =  ( 1st `  <. A ,  B >. ) )
2 op1st.1 . . 3  |-  A  e. 
_V
3 op1st.2 . . 3  |-  B  e. 
_V
42, 3op1st 6255 . 2  |-  ( 1st `  <. A ,  B >. )  =  A
51, 4eqtrdi 2256 1  |-  ( C  =  <. A ,  B >.  ->  ( 1st `  C
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776   <.cop 3646   ` cfv 5290   1stc1st 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fv 5298  df-1st 6249
This theorem is referenced by:  xp1st  6274  sbcopeq1a  6296  csbopeq1a  6297  eloprabi  6305  mpomptsx  6306  dmmpossx  6308  fmpox  6309  fmpoco  6325  df1st2  6328  xporderlem  6340  xpf1o  6966  fisumcom2  11864  fprodcom2fi  12052  txbas  14845  cnmpt1st  14875  txhmeo  14906  lgsquadlem1  15669  lgsquadlem2  15670
  Copyright terms: Public domain W3C validator