| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1std | Unicode version | ||
| Description: Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| op1st.1 |
|
| op1st.2 |
|
| Ref | Expression |
|---|---|
| op1std |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5578 |
. 2
| |
| 2 | op1st.1 |
. . 3
| |
| 3 | op1st.2 |
. . 3
| |
| 4 | 2, 3 | op1st 6234 |
. 2
|
| 5 | 1, 4 | eqtrdi 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-iota 5233 df-fun 5274 df-fv 5280 df-1st 6228 |
| This theorem is referenced by: xp1st 6253 sbcopeq1a 6275 csbopeq1a 6276 eloprabi 6284 mpomptsx 6285 dmmpossx 6287 fmpox 6288 fmpoco 6304 df1st2 6307 xporderlem 6319 xpf1o 6943 fisumcom2 11782 fprodcom2fi 11970 txbas 14763 cnmpt1st 14793 txhmeo 14824 lgsquadlem1 15587 lgsquadlem2 15588 |
| Copyright terms: Public domain | W3C validator |