| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbopeq1a | GIF version | ||
| Description: Equality theorem for substitution of a class 𝐴 for an ordered pair 〈𝑥, 𝑦〉 in 𝐵 (analog of csbeq1a 3113). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| csbopeq1a | ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2782 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | vex 2782 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | op2ndd 6265 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = 𝑦) |
| 4 | 3 | eqcomd 2215 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑦 = (2nd ‘𝐴)) |
| 5 | csbeq1a 3113 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → 𝐵 = ⦋(2nd ‘𝐴) / 𝑦⦌𝐵) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐵 = ⦋(2nd ‘𝐴) / 𝑦⦌𝐵) |
| 7 | 1, 2 | op1std 6264 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = 𝑥) |
| 8 | 7 | eqcomd 2215 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑥 = (1st ‘𝐴)) |
| 9 | csbeq1a 3113 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → ⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵) | |
| 10 | 8, 9 | syl 14 | . 2 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵) |
| 11 | 6, 10 | eqtr2d 2243 | 1 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ⦋csb 3104 〈cop 3649 ‘cfv 5294 1st c1st 6254 2nd c2nd 6255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fv 5302 df-1st 6256 df-2nd 6257 |
| This theorem is referenced by: dfmpo 6339 f1od2 6351 |
| Copyright terms: Public domain | W3C validator |