ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbopeq1a GIF version

Theorem csbopeq1a 6340
Description: Equality theorem for substitution of a class 𝐴 for an ordered pair 𝑥, 𝑦 in 𝐵 (analog of csbeq1a 3133). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
csbopeq1a (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵 = 𝐵)

Proof of Theorem csbopeq1a
StepHypRef Expression
1 vex 2802 . . . . 5 𝑥 ∈ V
2 vex 2802 . . . . 5 𝑦 ∈ V
31, 2op2ndd 6301 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = 𝑦)
43eqcomd 2235 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = (2nd𝐴))
5 csbeq1a 3133 . . 3 (𝑦 = (2nd𝐴) → 𝐵 = (2nd𝐴) / 𝑦𝐵)
64, 5syl 14 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐵 = (2nd𝐴) / 𝑦𝐵)
71, 2op1std 6300 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝑥)
87eqcomd 2235 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑥 = (1st𝐴))
9 csbeq1a 3133 . . 3 (𝑥 = (1st𝐴) → (2nd𝐴) / 𝑦𝐵 = (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵)
108, 9syl 14 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) / 𝑦𝐵 = (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵)
116, 10eqtr2d 2263 1 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  csb 3124  cop 3669  cfv 5318  1st c1st 6290  2nd c2nd 6291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-1st 6292  df-2nd 6293
This theorem is referenced by:  dfmpo  6375  f1od2  6387
  Copyright terms: Public domain W3C validator